Gene Editing
The Gene Editing Group is dedicated to discovering, developing, and applying innovative genetic tools that drive translational advances in cell and gene therapies. We work with promising systems such as CRISPR/Cas9, CRISPRi, and Cas13d, which require specific adaptations for each unique application. Our research addresses critical challenges in areas like gene therapy (Moretti et al., 2020), cell replacement therapies (Giehrl-Schwab et al., 2022), and novel RNA modulation and imaging systems (Gruber et al., 2024). For therapies that target specific cell types such as stem cells, or cells in challenging environments like the CNS, precise, targeted delivery is essential. To meet this need, we are developing a novel delivery platform inspired by nature, enhanced by artificial intelligence, and built with synthetic proteins (Schuhmacher et al., submitted). In addition, our transgenic unit supports both in-house scientists and external collaborators by creating customized model systems, including iPSCs and advanced mouse models (Giusti et al., 2024; Behrens et al., 2021). Overall, our vision is to empower the next generation of scientific and translational breakthroughs by providing and applying tailored genetic tools.
Team Members
Publications
Xu, M. ; Ito-Kureha, T. ; Kang, H.-S. ; Chernev, A. ; Raj, T. ; Hoefig, K.P. ; Hohn, C. ; Giesert, F. ; Wang, Y. ; Pan, W. ; Ziętara, N. ; Straub, T. ; Feederle, R. ; Daniel, C. ; Adler, B. ; König, J. ; Feske, S. ; Tsokos, G.C. ; Wurst, W. ; Urlaub, H. ; Sattler, M. ; Kisielow, J. ; Wulczyn, F.G. ; Łyszkiewicz, M. ; Heissmeyer, V.
Correction to "The thymocyte-specific RNA-binding protein Arpp21 provides TCR repertoire diversity by binding to the 3'-UTR and promoting Rag1 mRNA expression".Gruber, C. ; Krautner, L. ; Bergant, V. ; Grass, V. ; Ma, Z. ; Rheinemann, L. ; Krus, A. ; Reinhardt, F. ; Mazneykova, L. ; Rocha-Hasler, M. ; Truong, D.J.J. ; Westmeyer, G.G. ; Pichlmair, A. ; Ebert, G. ; Giesert, F. ; Wurst, W.
Engineered, nucleocytoplasmic shuttling Cas13d enables highly efficient cytosolic RNA targeting.Giusti, S.A. ; Pino, N.S. ; Pannunzio, C. ; Ogando, M.B. ; Armando, N.G. ; Garrett, L. ; Zimprich, A. ; Becker, L. ; Gimeno, M.L. ; Lukin, J. ; Merino, F.L. ; Pardi, M.B. ; Pedroncini, O. ; Di Mauro, G.C. ; Gailus-Durner, V. ; Fuchs, H. ; Hrabě de Angelis, M. ; Patop, I.L. ; Turck, C.W. ; Deussing, J.M. ; Vogt Weisenhorn, D.M. ; Jahn, O. ; Kadener, S. ; Hölter, S.M. ; Brose, N. ; Giesert, F. ; Wurst, W. ; Marin-Burgin, A. ; Refojo, D.
A brain-enriched circular RNA controls excitatory neurotransmission and restricts sensitivity to aversive stimuli.Hembach, S. ; Schmidt, S. ; Orschmann, T. ; Burtscher, I. ; Lickert, H. ; Giesert, F. ; Weisenhorn, D.M. ; Wurst, W.
Engrailed 1 deficiency induces changes in ciliogenesis during human neuronal differentiation.Xu, M. ; Ito-Kureha, T. ; Kang, H.-S. ; Chernev, A. ; Raj, T. ; Hoefig, K.P. ; Hohn, C. ; Giesert, F. ; Wang, Y. ; Pan, W. ; Ziętara, N. ; Straub, T. ; Feederle, R. ; Daniel, C. ; Adler, B. ; König, J. ; Feske, S. ; Tsokos, G.C. ; Wurst, W. ; Urlaub, H. ; Sattler, M. ; Kisielow, J. ; Wulczyn, F.G. ; Łyszkiewicz, M. ; Heissmeyer, V.
The thymocyte-specific RNA-binding protein Arpp21 provides TCR repertoire diversity by binding to the 3'-UTR and promoting Rag1 mRNA expression.