Skip to main content
Human heart with vessels, lungs, bronchial tree and cut rib cage.
matis75 - stock.adobe.com

Yildirim/Conlon Lab

Immunopathology of COPD

We want to understand which subtypes of T-cell play a role in the development of COPD - a major public health problem with prevalence as well as mortality still rising.

We want to understand which subtypes of T-cell play a role in the development of COPD - a major public health problem with prevalence as well as mortality still rising.

COPD - third leading cause of death worldwide

The stimulus of long-term exposure to toxic gases and most often cigarette smoke causes parenchymal lung tissue damage, remodeling of small airways, airway obstruction, and a subsequent decline in lung function. Innate inflammatory immune cells, i.e. neutrophils and macrophages, and CD8+ T cells have been described to be considerably involved in lung tissue damage in COPD. However, increasing evidence suggests that the inflammatory response of other specific immune cells, in particular CD4+ T and B cells present in the lungs of COPD patients, contributes to the pathogenesis of COPD. More studies are needed to understand the exact role and involvement of these immune cells in the chronic inflammatory response in COPD.

Promising therapeutic approach against COPD

In COPD, immune cells (B-cells and T-cells) form newly organized structures in the lung, follicles, which are known to play an important role in the disease progression. The formation of these structures requires the activation of a specific cellular receptor: the lymphotoxin beta receptor which is also a regulator of cell death. The death of epithelial lung cells is another feature of COPD observed in patients, preventing them from breathing effectively. We found that the blocking of lymphotoxin beta receptor signaling leads to the activation of so-called Wnt signaling. Wnt signaling is an essential pathway for lung development. In COPD patients this pathway gets switched off preventing the lung from being able to repair and regenerate.

Our work published in Nature journal offers great potential for implementing lung regenerative medicine approaches in the clinic. To achieve this ultimate goal we are testing the novel dual therapeutic approach in human clinical trials over the coming years. (See "Clinical Trials")

Scientists at Yildirim/Conlon Lab

Bake_Rebecca_Portrait

Rebecca Bake

Master of Science

Karl Biesemann

Master Student
Borndörfer_Sonja_Portrait

Sonja Borndörfer

Master Student
Portrait Kübra Caglar LHI

Kübra Caglar

PhD Student
Portrait Sirui Chen LHI

Sirui Chen

PhD Student
Porträt Deepesh Dhakad LHI

Deepesh Dhakad

PhD Student
Portrait Guilherme Dragunas LHI

Guilherme Dragunas

Postdoc
Goracci_Chiara_Portrait

Dr. Chiara Goracci

Postdoc
Portrait Güney Güvenc LHI

Güney Güvenç

PhD Student
Havristiuc_Simona_Portrait_LHI

Simona Havristiuc

Technical Assistant
Porträt Christine Hollauer LHI

Christine Hollauer

Technical Assistant
Housni_Aylin_Portrait

Aylin Housni

Technical Assistant
Jeridi_Aicha_Portrait

Dr. Aicha Jeridi

Postdoctoral Fellow
Portrait Markus Klotz LHI

Markus Klotz

PhD Student
Mayer_Lena_Portrait

Lena Mayer

PhD Student

Elif Ölken Akova

Postdoc
Patil_Neha_Porträt_LHI

Dr. Neha Patil

Postdoc
Riediger_Alisa_Portrait

Alisa Riediger

PhD Student
Tan_Xiaomei_Portrait_LHI

Xiaomei Tan

Doctoral Student
Tapken_Claas_Portrait

Claas Tapken

PhD Student

Niels Tepho

PhD Student
Portrait Lea Theilacker LHI

Lea Theilacker

PhD Student
Portrait Henu Verma LHI

Dr. Henu Kumar Verma

Postdoc
Portrait Marie Zöller LHI

Marie Zöller

PhD Student

Publications

2024, Wissenschaftlicher Artikel in Cell Host & Microbe

Persistence of spike protein at the skull-meninges-brain axis may contribute to the neurological sequelae of COVID-19.

SARS-CoV-2 infection is associated with long-lasting neurological symptoms, although the underlying mechanisms remain unclear. Using optical clearing and imaging, we observed the accumulation of SARS-CoV-2 spike protein in the skull-meninges-brain axis of human COVID-19 patients, persisting long after viral clearance. Further, biomarkers of neurodegeneration were elevated in the cerebrospinal fluid from long COVID patients, and proteomic analysis of human skull, meninges, and brain samples revealed dysregulated inflammatory pathways and neurodegeneration-associated changes. Similar distribution patterns of the spike protein were observed in SARS-CoV-2-infected mice. Injection of spike protein alone was sufficient to induce neuroinflammation, proteome changes in the skull-meninges-brain axis, anxiety-like behavior, and exacerbated outcomes in mouse models of stroke and traumatic brain injury. Vaccination reduced but did not eliminate spike protein accumulation after infection in mice. Our findings suggest persistent spike protein at the brain borders may contribute to lasting neurological sequelae of COVID-19.

Weiterlesen
2024, Wissenschaftlicher Artikel in Nature Communications

LungVis 1.0: An automatic AI-powered 3D imaging ecosystem unveils spatial profiling of nanoparticle delivery and acinar migration of lung macrophages.

Targeted (nano-)drug delivery is essential for treating respiratory diseases, which are often confined to distinct lung regions. However, spatio-temporal profiling of drugs or nanoparticles (NPs) and their interactions with lung macrophages remains unresolved. Here, we present LungVis 1.0, an AI-powered imaging ecosystem that integrates light sheet fluorescence microscopy with deep learning-based image analysis pipelines to map NP deposition and dosage holistically and quantitatively across bronchial and alveolar (acinar) regions in murine lungs for widely-used bulk-liquid and aerosol-based delivery methods. We demonstrate that bulk-liquid delivery results in patchy NP distribution with elevated bronchial doses, whereas aerosols achieve uniform deposition reaching distal alveoli. Furthermore, we reveal that lung tissue-resident macrophages (TRMs) are dynamic, actively patrolling and redistributing NPs within alveoli, contesting the conventional paradigm of TRMs as static entities. LungVis 1.0 provides an advanced framework for exploring pulmonary delivery dynamics and deepening insights into TRM-mediated lung immunity.

Weiterlesen
2024, Wissenschaftlicher Artikel in Cellular & Molecular Immunology

CD30 influences germinal center B-cell dynamics and the expansion of IgG1-switched B cells.

Initially, identified as a Hodgkin lymphoma marker, CD30 was subsequently detected on a subset of human B cells within and around germinal centers (GCs). While CD30 expression is typically restricted to a few B cells, expansion of CD30-expressing B cells occurs in certain immune disorders and during viral infections. The role of CD30 in B cells remains largely unclear. To address this gap in knowledge, we established a conditional CD30-knockin mouse strain. In these mice, B-cell-specific CD30 expression led to a normal B-cell phenotype in young mice, but most aged mice exhibited significant expansion of B cells, T cells and myeloid cells and increased percentages of GC B cells and IgG1-switched cells. This may be driven by the expansion of CD4+ senescence-associated T cells and T follicular helper cells, which partially express CD30-L (CD153) and may stimulate CD30-expressing B cells. Inducing CD30 expression in antigen-activated B cells accelerates the GC reaction and augments plasma cell differentiation, possibly through the posttranscriptional upregulation of CXCR4. Furthermore, CD30 expression in GC B cells promoted the expansion of IgG1-switched cells, which displayed either a GC or memory-like B-cell phenotype, with abnormally high IgG1 levels compared with those in controls. These findings shed light on the role of CD30 signaling in GC B cells and suggest that elevated CD30+ B-cell numbers lead to pathological lymphocyte activation and proliferation.

Weiterlesen
2024, Wissenschaftlicher Artikel in JCI insight

Interpretable machine learning uncovers epithelial transcriptional rewiring and a role for Gelsolin in COPD.

Transcriptomic analyses have advanced the understanding of complex disease pathophysiology including chronic obstructive pulmonary disease (COPD). However, identifying relevant biologic causative factors has been limited by the integration of high dimensionality data. COPD is characterized by lung destruction and inflammation with smoke exposure being a major risk factor. To define novel biological mechanisms in COPD, we utilized unsupervised and supervised interpretable machine learning analyses of single cell-RNA sequencing data from the gold standard mouse smoke exposure model to identify significant latent factors (context-specific co-expression modules) impacting pathophysiology. The machine learning transcriptomic signatures coupled to protein networks uncovered a reduction in network complexity and novel biological alterations in actin-associated gelsolin (GSN), which was transcriptionally linked to disease state. GSN was altered in airway epithelial cells in the mouse model and in human COPD. GSN was increased in plasma from COPD patients, and smoke exposure resulted in enhanced GSN release from airway cells from COPD patients. This method provides insights into rewiring of transcriptional networks that are associated with COPD pathogenesis and provide a novel analytical platform for other diseases.

Weiterlesen
2024, Wissenschaftlicher Artikel in JCI insight

Fibroblast-derived extracellular vesicles contain SFRP1 and mediate pulmonary fibrosis.

Idiopathic pulmonary fibrosis (IPF) is a lethal chronic lung disease characterized by aberrant intercellular communication, extracellular matrix deposition, and destruction of functional lung tissue. While extracellular vesicles (EVs) accumulate in the IPF lung, their cargo and biological effects remain unclear. We interrogated the proteome of EV and non-EV fractions during pulmonary fibrosis and characterized their contribution to fibrosis. EVs accumulated 14 days after bleomycin challenge, correlating with decreased lung function and initiated fibrogenesis in healthy precision-cut lung slices. Label-free proteomics of bronchoalveolar lavage fluid EVs (BALF-EVs) collected from mice challenged with bleomycin or control identified 107 proteins enriched in fibrotic vesicles. Multiomic analysis revealed fibroblasts as a major cellular source of BALF-EV cargo, which was enriched in secreted frizzled related protein 1 (SFRP1). Sfrp1 deficiency inhibited the activity of fibroblast-derived EVs to potentiate lung fibrosis in vivo. SFRP1 led to increased transitional cell markers, such as keratin 8, and WNT/β-catenin signaling in primary alveolar type 2 cells. SFRP1 was expressed within the IPF lung and localized at the surface of EVs from patient-derived fibroblasts and BALF. Our work reveals altered EV protein cargo in fibrotic EVs promoting fibrogenesis and identifies fibroblast-derived vesicular SFRP1 as a fibrotic mediator and potential therapeutic target for IPF.

Weiterlesen
2024, Editorial in Nature Reviews - Endocrinology

The role of DNA damage in diabetic complications.

Mechanistic and clinical data indicate that DNA damage contributes to the pathogenesis and progression of diabetic complications. Thus, DNA damage and its signalling are entering the field of diabetology.

Weiterlesen
2024, Wissenschaftlicher Artikel in Transplantation

Characterization of baseline lung allograft dysfunction in single lung transplant recipients.

BACKGROUND: Baseline lung allograft dysfunction (BLAD) is characterized by the failure to achieve normal baseline lung function after double lung transplantation (DLTX) and is associated with a high risk of mortality. In single lung transplant (SLTX) recipients, however, cutoff values and associated factors have not been explored. Here, we aimed to define BLAD in SLTX recipients, investigate its impact on allograft survival, and identify potential risk factors for BLAD in SLTX recipients. METHODS: We performed a retrospective, single-center analysis of the LTX cohort of LMU Munich between 2010 and 2018. In accordance with DLTX cutoffs, BLAD in SLTX recipients was defined as failure to achieve percentage of forced expiratory volume in 1 s and percentage of forced vital capacity of >60% on 2 consecutive tests >3 wk apart. Survival analysis and regression analysis for potential predictors of BLAD were performed. RESULTS: In a cohort of 141 SLTX recipients, 43% of patients met BLAD criteria. SLTX recipients with BLAD demonstrated impaired survival. Native lung hyperinflation was associated with BLAD in obstructive disease, whereas donor/recipient lung size mismatch was associated with BLAD in both obstructive and restrictive underlying diseases. Pulmonary function testing at 3 mo after lung transplantation predicted normal baseline lung function in SLTX recipients with obstructive lung disease. CONCLUSIONS: BLAD in SLTX recipients is as relevant as in DLTX recipients and should generally be considered in the follow-up of LTX recipients. Risk factors for BLAD differed between underlying obstructive and restrictive lung disease. A better understanding of associated factors may help in the development of preventive strategies.

Weiterlesen
2024, Wissenschaftlicher Artikel in Advanced science

The eATP/P2×7R axis drives quantum dot-nanoparticle induced neutrophil recruitment in the pulmonary microcirculation.

Exposure to nanoparticles (NPs) is frequently associated with adverse cardiovascular effects. In contrast, NPs in nanomedicine hold great promise for precise lung-specific drug delivery, especially considering the extensive pulmonary capillary network that facilitates interactions with bloodstream-suspended particles. Therefore, exact knowledge about effects of engineered NPs within the pulmonary microcirculation are instrumental for future application of this technology in patients. To unravel the real-time dynamics of intravenously delivered NPs and their effects in the pulmonary microvasculature, we employed intravital microscopy of the mouse lung. Only PEG-amine-QDs, but not carboxyl-QDs triggered rapid neutrophil recruitment in microvessels and their subsequent recruitment to the alveolar space and was linked to cellular degranulation, TNF-α, and DAMP release into the circulation, particularly eATP. Stimulation of the ATP-gated receptor P2X7R induced expression of E-selectin on microvascular endothelium thereby mediating the neutrophilic immune response. Leukocyte integrins LFA-1 and MAC-1 facilitated adhesion and decelerated neutrophil crawling on the vascular surface. In summary, this study unravels the complex cascade of neutrophil recruitment during NP-induced sterile inflammation. Thereby we demonstrate novel adverse effects for NPs in the pulmonary microcirculation and provide critical insights for optimizing NP-based drug delivery and therapeutic intervention strategies, to ensure their efficacy and safety in clinical applications.

Weiterlesen
2024, Wissenschaftlicher Artikel in Translational Oncology

Improved survival of patients with stage III small-cell lung cancer with primary resection: A SEER-based analysis.

INTRODUCTION: Small cell lung cancer (SCLC) is mostly diagnosed in stage III-IV patients and associated with poor prognosis. To date, surgery is no gold-standard treatment for any SCLC stage and evidence is lacking whether it is beneficial. Here we investigate the impact of surgery, with special attention to stage III SCLC patients, sub-stages and treatment combinations. METHODS: The overall survival (OS) and cancer-specific survival (CSS) of 33,198 SCLC patients (SEER database) were analyzed retrospectively, using various statistical analyses, including propensity score matching (PSM), recursive partitioning, and sequential landmark analyses. RESULTS: Independent of stage, the OS of patients with surgery-including treatments was almost always better than without surgery. This holds true for stage I-II patients, even after PMS analysis (p < 0.017). The same was found for stage IV patients that underwent surgery plus chemotherapy vs. chemotherapy alone (p = 0.013 after PSM). Stage III patients showed a robust improvement in OS and CSS after surgery (OS: 18 vs.13 months) or surgery plus chemotherapy (OS: 20 vs.15 months) as confirmed by well-balanced PSM and sequential landmark analyses of long-term survivors. More detailed analyses using two independent approaches showed prolonged OS in T3-4/N0-1 and T1-2/N2 stage III patients after surgery or surgery plus chemotherapy. Importantly, primary site surgery had a major survival advantage over surgery at regional sites (p < 0.003). CONCLUSION: Our study demonstrates that selected patients of all stages, including stage III T3-4/N0-1 and T1-2/N2, can benefit greatly from surgery-including treatments. Thus, surgery should be included into hospital treatment recommendations for specifically selected SCLC patients. Condensed abstract Primary resection in patients with stage III SCLC needs re-evaluation. Selected patients with stage III SCLC benefit significantly from surgery. Patients with T3-4/N0-1 and T1-2/N2 stage III SCLC should be considered for surgery.

Weiterlesen

Contact

Portraet-Ali-Oender-Yildirim_freigestellt

Prof. Dr. Ali Önder Yildirim

Director & Team Leader

Contact

Thomas Conlon LHI

Dr. Thomas Conlon

Team Leader