lhi-burgstaller-lab-stage-1920x823

Immunotherapeutic Technologies

Burgstaller Lab

In the group of Immunotherapeutic Technologies we have a strong focus on establishing and applying advanced tools leading to the discovery and development of novel therapeutics, and thereby efficiently tackling chronic lung diseases.

Follow us on X

In the group of Immunotherapeutic Technologies we have a strong focus on establishing and applying advanced tools leading to the discovery and development of novel therapeutics, and thereby efficiently tackling chronic lung diseases.

Follow us on X

About our Research

In the group of Immunotherapeutic Technologies we have a strong focus on establishing and applying advanced tools leading to the discovery and development of novel therapeutics, and thereby efficiently tackling chronic lung diseases. 

Pulmonary fibrosis, and especially Idiopathic Pulmonary Fibrosis (IPF), is a progressing and finally deadly disease. The underlying pathophysiology is deranged wound-healing due to repetitive injury of the lung parenchyma, tissue scarring and abnormal extracellular matrix (ECM) deposition, largely attributed to (myo)fibroblasts as effector cells. Currently existing pharmacotherapy do not stop disease progression, leaving lung transplantation as the only clinical treatment. Thus, there is a high medical need for novel antifibrotic therapeutics.

Human disease models, drug development and translation


We seek to establish and apply advanced tools which are based on human disease models. With this toolbox we aim to discover and develop novel therapeutics that inhibit progression of fatal fibrotic lung diseases and ultimately secure survival of the patients. Using predictive human disease models already in early preclinical investigations in combination with phenotypic screening strategies, are the driving force for accelerating translation of novel first-in-class small-molecule drugs into the clinic.

New molecular targets and mode-of-action

Downstream of the drug discovery and development pipeline, we aim to understand and investigate the drugs’ mode-of-action, as well as to identify novel molecular targets and signaling pathways.  For all this we work highly multidisciplinary and collaborative. Our toolbox of applied technologies includes assay development, phenotypic high-throughput drug-screening, deep learning and artificial intelligence (AI) methods, imageomics, medicinal chemistry, advanced 3D and 4D imaging techniques, human ex-vivo disease models as precision cut lung slices (PCLS), mouse disease models, lung organoids, bioengineering and system biology approaches.

Scientists at Burgstaller Lab

Jäger_Joshua_FREI
Joshua Jäger

MD Student

Karakuzulu_Buse_Portrait
Buse Karakuzulu

PhD Student

Portrait Kevin Merchant LHI
Kevin Merchant

Doctoral Researcher

Portrait Marisa Neumann LHI
Marisa Neumann

Technical Assistant (TA)

Porträt Diana Gonzalez
Diana Porras-Gonzalez

PhD Student

Rujula Sharma

Master Student

Shen_Lin_Portait
Lin Shen

PhD Student

Verma_Arun-Kumar_Portrait_LHI
Arun Kumar Verma

Scientist

Julian Warfsmann

PhD Student

Porträt Xin Wei LHI
Xin Wei

PhD Student

Publications

Adv. Func. Mat., DOI: 10.1002/adfm.202502805 (2025)

Sieber-Schaefer, F. ; Jiang, M. ; Kromer, A.P.E. ; Nguyen, A. ; Molbay, M. ; Pinto Carneiro, S. ; Juergens, D. ; Burgstaller, G. ; Popper, B. ; Winkeljann, B. ; Merkel, O.M.

Machine learning-enabled polymer discovery for enhanced pulmonary siRNA delivery.
Pneumologie 79, S24 - S25 (2025)

Stoleriu, M.-G. ; Ansari, M. ; Strunz, M. ; Schamberger, A.C. ; Heydarian, M. ; Gabriel, C. ; Najak, A. ; Disovic, A. ; Schneider, J. ; Gerckens, M. ; Burgstaller, G. ; Ding, Y. ; Doryab, A. ; Voss, C. ; Ketscher, C. ; Sienel, W. ; Kauke, T. ; Fertmann, J. ; Schneider, C. ; Behr, J. ; Irmler, M. ; Beckers, J. ; Eickelberg, O. ; Schubert, B. ; Hauck, S.M. ; Hatz, R. ; Schmid, O. ; Stöger, T. ; Schiller, H. ; Hilgendorff, A.

Development of advanced in-vitro human bronchial epithelial models and lung cell atlas in COPD enabled by thoracic surgery translational research.
ACS Appl. Mater. Interfaces 17, 11861-11872 (2025)

Müller, J.T. ; Kromer, A.P.E. ; Ezaddoustdar, A. ; Alexopoulos, I. ; Steinegger, K.M. ; Porras-Gonzalez, D.L. ; Berninghausen, O. ; Beckmann, R. ; Braubach, P. ; Burgstaller, G. ; Wygrecka, M. ; Merkel, O.M.

Nebulization of RNA-loaded micelle-embedded polyplexes as a potential treatment of idiopathic pulmonary fibrosis.
2024 in
In: (38th Conference on Neural Information Processing Systems, NeurIPS 2024, 9-15 December 2024, Vancouver). 2024. accepted ( ; 37)

Bukas, C. ; Subramanian, H. ; See, F. ; Steinchen, C. ; Ezhov, I. ; Boosarpu, G. ; Asgharpour, S. ; Burgstaller, G. ; Lehmann, M. ; Kofler, F. ; Piraud, M.

MultiOrg: A Multi-rater organoid-detection dataset.

Yang, L. ; Liu, Q. ; Kumar, P. ; Sengupta, A. ; Farnoud, A. ; Shen, R. ; Trofimova, D. ; Ziegler, S. ; Davoudi, N. ; Doryab, A. ; Yildirim, A.Ö. ; Diefenbacher, M. ; Schiller, H. ; Razansky, D. ; Piraud, M. ; Burgstaller, G. ; Kreyling, W.G. ; Isensee, F. ; Rehberg, M. ; Stöger, T. ; Schmid, O.

LungVis 1.0: An automatic AI-powered 3D imaging ecosystem unveils spatial profiling of nanoparticle delivery and acinar migration of lung macrophages.
JCI insight 9:e168889 (2024)

Burgy, O. ; Mayr, C.H. ; Schenesse, D. ; Fousekis Papakonstantinou, E. ; Ballester, B. ; Sengupta, A. ; She, Y. ; Hu, Q. ; Melo-Narváez, M.C ; Jain, E. ; Pestoni, J. ; Mozurak, M. ; Estrada-Bernal, A. ; Onwuka, U. ; Coughlan, C. ; Parimon, T. ; Chen, P. ; Heimerl, T. ; Bange, G. ; Schmeck, B.T. ; Lindner, M. ; Hilgendorff, A. ; Ruppert, C. ; Guenther, A. ; Mann, M. ; Yildirim, A.Ö. ; Eickelberg, O. ; Jung, A.L. ; Schiller, H. ; Lehmann, M. ; Burgstaller, G. ; Königshoff, M.

Fibroblast-derived extracellular vesicles contain SFRP1 and mediate pulmonary fibrosis.

Contact

Gerald Burgstaller LHI
Dr. rer. nat. Gerald Burgstaller

Team Leader

Profil anzeigen