Together we take the lead on your career!
The High Potentials Program in a Nutshell
The High Potentials Program (HPP) is an internal program to support and train early-career postdocs at Helmholtz Munich to ensure that they are well-prepared for the next career steps. The two-year training program is designed for early-career postdocs who are already conducting research at Helmholtz Munich and want to assume leadership positions in science in the future. The HPP Fellows are selected via a competitive selection and reviewing process following an annual call.
The program includes in-person, online and blended learning formats as well as an annual retreat. The fellows receive in-depth group trainings and individual support e.g. to develop their academic profile; their third-party funding strategy; expertise in the German academic system; lab, leadership and project management skills; input on scientific collaboration and outreach; mentoring & coaching offers as well as a long-term involvement as an alumnus/alumna after completing the program. In addition, scientific symposia and a Scientific Advisory Board will support the fellows’ scientific progress and exchange across departments.
The program also counts on the fellows’ PIs or group leaders who are asked to engage in regular feedback and career development talks. Fellows can also profit from the intense collaboration and support of the HPP peer group which will be an essential benefit of the program.
Learn more about the fellows & their research
Alaa Bessadok
Helmholtz AI | Institute of Computational Biology, Computational Health Center
Academic Career & Research Areas
Alaa Bessadok obtained her master and bachelor degrees from the Higher Institute of Management of Gabes from the University of Gabes of Tunisia in 2018 and 2015, respectively. During this time, she studied informatics applied to management and business intelligence then she started her PhD at the Higher Institute of Computer Science and Communication Techniques (ISITCom), University of Sousse of Tunisia. During 3 years, she worked on brain connectome prediction for disorder diagnosis. In 2022, she started her postdoctoral position at Helmholtz AI where she focuses on cell-death mediated drug discovery. She was awarded Alexander von Humboldt Postdoc Fellowship and started working with two hosts from Helmholtz Munich.
Alaa’s research focuses on developing AI tools to predict cell death types of distinct drugs using high-content-screening (HCS) assays. Her main area of research is geometric deep learning with the aim of studying drug-induced cell death modalities (e.g., ferroptosis and apoptosis). The goal of her highly collaborative research is to employ computational techniques using artificial intelligence (AI) to understand how certain drugs may selectively induce a distinct form of cell death modality. This understanding will accelerate the use of such drugs in specific clinical settings.
What motivates you to continue in research?
"At a very young age I learned from my dad, who was science professor, how to develop a curiosity for everything in life. Later on, when I started my PhD, my love to science grows exponentially. Research mainly stretches my mind, boosts my critical thinking and teaches me how to appreciate the beauty in science despite all challenges and this is what keeps me in academia."
Olga Bondareva
Helmholtz Institute for Metabolism, Obesity and Vascular Research (HI-MAG)
Academic Career & Research Areas
Olga Bondareva completed her Bachelor and Master studies in Applied Mathematics and Physics at the Moscow Institute of Physics and Technology, Russia. She moved to Germany in 2014 to undertake her PhD in Biology as a member of the CiM-IMPRS Joint Graduate Program of the Max Planck Institute for Molecular Biomedicine and the University of Münster. During this time, Olga specialized in vascular biology, epigenetics and bioinformatics. In 2018, she joined the group of Lutz Hein at University of Freiburg for her postdoctoral studies. Here, she further pursued her interests in cardiovascular disease and epigenetics, and established a novel single-cell RNA-sequencing pipeline for the analysis of human cardiomyocytes. In 2020, Olga was recruited to the HI-MAG institute in Leipzig. She has been instrumental in establishing the single cell techniques at the Helmholtz Institute for Metabolism, Obesity and Vascular Research (HI-MAG) and is focused on understanding how metabolic disease causes irreversible damage to blood vessels.
Olga's research focuses on vascular dysfunction in diseases associated with metabolic stress and obesity. She is fascinated by the intricate mechanisms of transcriptional regulation and epigenetic control in vascular cells and their implication in the response to various environmental changes and disease. She is interested in novel techniques and analyses to study transcriptional and epigenetic changes such as single cell multiomics and spatial transcriptomics. Her projects so far combined bench work and bioinformatic analyses of high-throughput data, utilizing both complementary approaches. Olga Bondareva’s work is aimed on identification of epigenetic regulators and potential mechanisms of prevention in vascular disease.
What do you particularly enjoy about research?
"In science, I particularly enjoy the feeling at the edge of unknown, when you are about to lift the curtain and see WHAT IS THERE. The tingling curiosity and the constant challenge are great drivers for me!"
Donovan Correa-Gallegos
Institute of Regenerative Biology and Medicine, Environmental Health Center
Academic Career & Research Areas
After completing his undergraduate studies in Biomedical Research and Masters in Biochemical Sciences at the Autonomous National University of Mexico, Donovan Correa-Gallegos obtained in 2021 his doctorate in the field of medical research at the Faculty of Medicine of the Ludwig-Maximilian University. Since then, he continues his research career at Helmholtz Munich as a postdoctoral researcher at the Institute of Regenerative Biology and Medicine.
Donovan's research interest revolve around the unveiling of cellular processes that orchestrate tissue development and repair. Particularly, his current research has focused in the physiology of discrete fibroblast populations in the skin and their role in skin morphogenesis and wound healing. Donovan has specialized in advanced image analysis methods, single-cell transcriptomics, and animal models of tissue repair.
What motivates you to continue in research?
"Research always pushes the limits of our imagination, logical reasoning, and creative thinking. I just never get bored!"
Laurens De Sadeleer
Institute for Lung Health and Immunity, Environmental Health Center
Academic Career & Research Areas
Laurens De Sadeleer is a pulmonologist and postdoctoral fellow in the Cell Circuits lab of Dr Herbert Schiller. He obtained his Bachelor’s and Master’s degree in Medicine at KU Leuven and completed his PhD at the BREATHE Laboratory at KU Leuven, Belgium in 2020. Afterwards, he received his further clinical training in Respiratory Medicine at St Lucas Hospital in Brugge, ZOL Hospital in Genk and at the University Hospitals Leuven, Belgium In 2022, he was supported by a prestigious Marie Curie-Sklodowska Postdoctoral Fellowship and joined Helmholtz Munich.
Laurens research interests include the characterization of the morpho-molecular progression of pulmonary fibrosis (PF) throughout temporal evolution and spatial diversity within the lung, using innovative multi-omics systems biology approaches. Moreover he is fascinated by the clinical diversity in pulmonary fibrosis and his goals are to understand this heterogeneity from a molecular angle, to endotype pulmonary fibrosis (PF) based on molecular mechanisms and pursuing personalized treatment in PF.
What excites you about research?
"Lung research gives me the unique opportunity to work with this fascinating organ which still surprise me regularly. Observing the enigmatic yet powerful process of inury response and how this can go wrong, is what excites me every day."
Google Scholar | ORCID iD | LinkedIn | ResearchGate | Twitter
Mehmet Gökkaya
Institute of Environmental Medicine, Environmental Health Center
Academic Career & Research Areas
After graduating from the University of Tübingen in Biochemistry, Mehmet Gökkaya started his PhD thesis at the Department of Environmental Medicine in the field of respiratory diseases. He has published six peer-reviewed articles and two additional articles in German. In 2022. he won a PI grant for his current research project on biomarkers predicting the course of COVID-19 infections. In 2021, Mehmet joined Helmholtz Munich to work for the projects CORAERO and PerForM-REACT. Additionally, he received the “Specific Immunotherapy Award” of DGAKI in 2021 and has filed a patent application.
For the last six years, Mehmet has worked in the field of allergy, studying biomarkers and their link to environmental factors. Early on in his work he realized the potential of combining bioinformatics expertise with immunological experimental work. By focusing on local immune responses in allergic patients and looking for nasal biomarkers he became a scientific game changer. His current aim is to identify early immune biomarkers that help to optimize the management of COVID-19 infections.
What motivates you to continue in research?
"I love science and I really enjoy the academic exchange. Research is full of opportunities and you can join different projects and working groups in order to follow your interests, explore new research areas and close knowledge gaps.
Above all, I enjoy the independence of thought. I never tire of expanding my understanding of biological mechanisms, my knowledge and my abilities to explore and investigate new areas in depth.” ."
Monika Litvinukova
Helmholtz Pioneer Campus
Academic Career & Research Areas
Monika Litvinukova has completed her undergraduate bachelor’s and master’s degrees in Biological Chemistry, as part of an elite cross-border study between Linz, Austria and Budweis, Czechia. She focused on biophysics of calcium signaling, for which she has received the Dean Award for her Master thesis. In 2017, Monika moved to Berlin to work in cardiac biology at the Max Delbrück Center. As part of her project on mapping the cell states of healthy human heart she has spent three years as a visiting scientist at the Wellcome Sanger Institute in Cambridge, UK. She has obtained her PhD in Biology at Humboldt University and has received the MDC 2020 publication prize for her PhD work. In 2021, she spent three months in Helmholtz Munich as part of the HiDA Program and later stayed at the Pioneer Campus as a postdoctoral researcher to continue her work.
Monika currently focuses on studying the role of ploidy and fat accumulation in the early stages of fatty liver disease. She is establishing new approaches to hepatic in vitro technologies and using state of the art single cell technologies to decipher the role of individual cell types and states in liver disease and aging. Additionally, she employs computational tools to better characterize the hepatic landscape and explore the potential of using the in vivo findings to better model the hepatic organoids.
What motivates you to continue in research?
"I have been extremely lucky to work with fantastic female mentors, who gave me the courage and confidence to pursue my scientific career. I am very passionate about tackling inequality, in both science and society. I envision to provide the same stimulating environment to the next generation of scientists."
Mo Lotfollahi
Institute of Computational Biology, Computational Health Center
Academic Career & Research Areas
Mo Lotfollahi completed his studies in Artificial Intelligence at the Sharif University of Technology in Iran. After that, he moved to Germany to start a Ph.D. with Fabian Theis in computational biology. He has recently finished his Ph.D. at the School of Life Sciences at the Technical University of Munich (TUM) with distinction (summa cum laude).
Mo's work lies in the intersection of machine learning (ML) and biology. He leverages machine learning to understand health and disease using single-cell biology for drug discovery and cell engineering. He has industry experience as a research intern and visitor, and consultant for both drug discovery companies and machine learning research (e.g., Cellarity, Facebook AI ). He was won multiple awards, from best paper awards to fellowships and awards from quantitative biosciences Munich (QBM), Joachim Herz Stiftung, Bayer Foundation and EMBL.
What excites you about research?
"The fact the I wake up and I can work completely new idea and new challenge never gets repetitive!"
Google Scholar | LinkedIn | Twitter | Website
Valeria Napolitano
Institute of Structural Biology, Molecular Targets and Therapeutics
Academic Career & Research Areas
Valeria Napolitano completed her undergraduate studies in Chemistry at the University of Naples “Federico II”. For her PhD, she joined the group of Prof Dubin at Jagiellonian University as MSCA-ITN fellow. In 2019, Valeria joined the group of Grzegorz Popowicz at Institute of Structural Biology at Helmholtz Munich.
Valeria's research focuses on identifying novel therapeutic targets and design potential drug candidates making use of the structural information. She uses structural biology and biochemical techniques to elucidate the structure and the function of proteins critical for health and linked to disease (i.e. antibiotic resistance, COVID19 and Trypanosomiasis) providing support to the structure-based drug discovery. Another aspect of her research focuses on developing macromolecules carriers to better treat diseases and illnesses like genetic disorders and cancers.
What excites you about research?
"Research allows you to pursue your interests, to learn always something new, to hone your problem-solving skills and to constantly challenge yourself in new ways. Doing research means that you are contributing to the discovery or development of something that can make a difference in people’s lives and there is nothing more satisfying."
Aaron Novikoff
Institute for Diabetes and Obesity, Helmholtz Diabetes Center
Academic Career & Research Areas
Aaron Novikoff is a postdoctoral researcher with expertise in both spatial and targeted molecular pharmacology for the treatment of diabetes and obesity. Originally from La Habra, California, he completed his undergraduate studies at the California Polytechnic University – San Luis Obispo. Following international experience in industry, in 2018 Aaron returned to academia completing his Master’s degree in Nutrition and Biomedicine at the Technical University of Munich (TUM), with a focus on time-series metabolomics analysis. Aaron then found interest in the field of drug discovery, and went on to achieve his doctorate in molecular pharmacology at Helmholtz Munich in 2022.
Aaron’s current research centers around customizing control over the traditional receptor response through co-targeted modifications of both drug structure and subcellular environment. Through this, his immediate goal is to achieve system-wide enhancements in peptide-based drug efficacy. Aaron’s long-term goal is to optimize therapeutics across multiple disease states by establishing a customizable interface connecting cellular microenvironment dynamics to the relevant optimizations needed for disease-specific receptor-based pharmacology.
What motivates you to continue in research?
"I am motivated by the gratitude of the opportunity, and the off-chance that my curiosity can contribute to reducing the burdens of those affected by non-communicable diseases. I also find the complex problem-solving and collaborative efforts required to uncover such mysteries pretty awesome too."
Marlies Oomen
Institute of Epigenetics and Stem Cells, Stem Cell Center
Academic Career & Research Areas
Marlies Oomen obtained her Bachelor’s and Master’s degree in Molecular Life Sciences and Drug Innovation at the University of Groningen, the Netherlands. She then did her PhD in the laboratory of Job Dekker at UMass Medical School, Worcester, MA, USA, splitting her time 50/50 between bioinformatics and wet lab. During her PhD, she focused on chromosome organization and epigenetic bookmarking during mitosis, using genomics techniques such as Hi-C, ATAC-seq and Cut&Run, as well as developing a novel technique to observe sister chromatid interactions.
Marlies joined the Torres-Padilla lab in September 2021 as an EMBO postdoctoral fellow. Here, she studies transcriptional regulation at and around transposable elements in early mammalian development, addressing her research questions using both computational and experimental approaches. By comparing how transposable elements regulate and are regulated across different mammalian species, she aims to gain a deeper understanding on how transposable elements and their host genomes co-evolved.
What excites you about research?
"I have always enjoyed puzzles and problem solving. Researchers come across such puzzles on a daily basis; both on a small, more practical level, while doing experiments, as well as on a much bigger scale when tackling scientific questions. The process of creative thinking and finding solutions for these scientific problems, is what I enjoy most about science."
Daniela Schranner
Systems Metabolomics Group, Institute of Computational Biology, Computational Health Center
Academic Career & Research Areas
Daniela Schranner completed her Bachelor’s and Master’s in Exercise Physiology at the Technical University of Munich and at the University of Sydney in Australia, with a focus on human performance, health and exercise training. In 2017, she started her PhD in Exercise Biology at the Technical University of Munich and received a doctoral scholarship from the German National Scholarship Foundation (Studienstiftung des deutschen Volkes) from 2018-2021. During her PhD, she spent time as a visiting researcher at Harvard Medical School in Boston, USA. Since June 2021, Daniela is a postdoc in the group of Gabi Kastenmüller.
Daniela’s research focuses on characterizing the short and long-term metabolic changes of exercise and their beneficial role for human health and preventive potential for diseases. Since joining Helmholtz Munich, her specific focus lies on the molecular underpinnings of the preventive potential of individualized exercise training for neurodegenerative diseases (e.g., Alzheimer’s diseases).
What excites you about research?
"What excites me about my research is to continuously discover new pieces on how exercise benefits the healthy and the diseased metabolism and the challenge of putting all these pieces together. I draw my day-to-day motivation from my vision to personalize exercise training and physical activity to prevent diseases or mitigate their burden."
Denis Vecellio Reane
Institute of Diabetes and Obesity, Helmholtz Diabetes Center
Academic Career & Research Areas
Denis Vecellio Reane graduated in Medical Biotechnologies from the University of Padua. In 2016, Denis obtained his PhD in Biosciences and Biotechnologies at the University of Padua in the field of calcium signalling in mitochondria under physiological and pathological conditions. As a postdoctoral researcher at the University of Padua, he focused on the mechanisms of tissue-specific regulation of mitochondrial calcium signalling, focusing on skeletal muscle. In 2021, Denis joined Helmholtz Munich to continue his research in the field of interorganelles communication. He was awarded a Marie Skłodowska-Curie Postdoctoral Fellowship funded by the European Union in 2022 to study the alteration of endoplasmic reticulum-mitochondria crosstalk in metabolic diseases.
Denis' research focuses on signalling crosstalk between the endoplasmic reticulum and mitochondria. He is interested in how communication between these intracellular organelles is modulated under physiological or pathological conditions. The aim of his research is to understand how intrinsic changes in one organelle can affect the functions of the other. Using a systematic approach that combines unbiased and hypothesis-driven experiments, Denis' research aims to identify how alterations in inter-organelle crosstalk contribute to the onset and progression of metabolic disease.
What excites you about research?
"Identifying a scientific question, proposing a hypothesis, designing experiments to test the validity of the hypothesis, and reaching a conclusion that confirms or refutes the hypothesis. Applying the scientific method is a daily challenge that never gets boring. It keeps me curious and pushes me to take on new challenges by applying new approaches."
Johanna Winter
Institute of Radiation Medicine, Molecular Targets and Therapeutics
Academic Career & Research Areas:
Johanna Winter studied Physics at the University of Heidelberg and the University of Umeå, Sweden. She completed her Master thesis at the German Cancer Research Center (DKFZ) in the field of Medical Physics in Radiation Oncology. For her doctoral studies, Johanna Winter joined Helmholtz Munich. During that time, she received the Young Investigator Award by the German Society of Medical Physics. In 2022, she started her postdoctoral research at the Klinikum rechts der Isar of the Technical University of Munich, while she is still affiliated with Helmholtz Munich.
Johanna focuses her research on the improvement of cancer therapy. She works on bringing microbeam radiotherapy, an emerging therapy technique with less side effects than conventional radiation therapy, towards clinical application. Her main focus is the prototype development of a novel x-ray source for microbeam radiotherapy as well as microbeam treatment planning to support preclinical research and to prepare clinical trials.
What do you particularly enjoy about research?
"I particularly enjoy the collaboration between different research fields. My close collaboration with physicists, engineers, biologists, and medical doctors brings many insights, different solutions to challenges, and a lot of fun!"