Skip to main content
Gruppenfoto IDR
Helmholtz Munich | ©Petra Nehmeyer

Woman and Diabetes

Most patients and particularly women with type-2 diabetes mellitus develop cardiovascular disease with substantial loss of life expectancy. Nonfatal cardiovascular disease contributes greatly to healthcare costs and decreased quality of life in patients with diabetes. Atherogenic dyslipidemia, high blood sugar and obesity are key contributors in people with insulin resistance, metabolic syndrome, and type-2 diabetes and is one of the strongest and independent predictors for cardiovascular disease. Unfortunately, the early stages of type-2 diabetes mellitus often go unrecognized, worsening the situation. People with obesity, particularly those referred to as ‘metabolically healthy obese,’ have a substantially higher risk of developing diabetes and its complications. This highlights that the current diagnostic methods are inadequate for capturing the heterogeneity seen in patient presentations, disease course, and response to therapy.

Our mission is to close this knowledge-gap by developing precise diagnostic tools and identifying novel and non-traditional biomarkers and treatment targets to monitor and preserve cardio-metabolic health on an individual basis using a wide range of techniques spanning biophysical chemistry, molecular biology, protein biochemistry, cell biology, multiomics and animal physiology in three metabolically important tissues.

1. Skeletal muscle and intermuscular fat (IMAT): known as a critical driver for cardio-metabolic disease and diabetes, IMAT increases with aging at an accelerated rate in men and women with diabetes. We are conducting in-depth molecular metabolic profiling of skeletal muscle and IMAT using state-of-the-art techniques such as spatial multiomics, functional microscopy, and mitochondrial bioenergetics to create an individual and  detailed molecular environment profile. This profile will be correlated with the novel non-invasive imaging technique MSOT and MIROM, a photoacoustic microscopy assessment of tissue composition, to develop a non-invasive diagnostic tool for accurately assessing metabolic disease states and the impact of lifestyle interventions such as diet and exercise.

2. Circulating immune cells: chronic conditions like obesity and insulin resistance induce functional changes in immune cells, especially monocytes and T-lymphocytes, increasing their pro-inflammatory profiles. We hypothesize that certain immune cell features could potentially be used to identify non-traditional biomarkers to monitor cardio-metabolic disease and treatment response on an individual basis.

3. Central Nervous System (CNS): Specific brain regions play a crucial role in regulating major metabolic processes and cardiovascular functions. We explore neuroendocrine mechanisms that may contribute to the development of cardiometabolic diseases, aiming to uncover new therapeutic targets.

By advancing our understanding in these key areas, we strive to improve the quality of life and life expectancy for individuals with type-2 diabetes mellitus, ultimately reducing the healthcare costs associated with nonfatal cardiovascular diseases.

Most patients and particularly women with type-2 diabetes mellitus develop cardiovascular disease with substantial loss of life expectancy. Nonfatal cardiovascular disease contributes greatly to healthcare costs and decreased quality of life in patients with diabetes. Atherogenic dyslipidemia, high blood sugar and obesity are key contributors in people with insulin resistance, metabolic syndrome, and type-2 diabetes and is one of the strongest and independent predictors for cardiovascular disease. Unfortunately, the early stages of type-2 diabetes mellitus often go unrecognized, worsening the situation. People with obesity, particularly those referred to as ‘metabolically healthy obese,’ have a substantially higher risk of developing diabetes and its complications. This highlights that the current diagnostic methods are inadequate for capturing the heterogeneity seen in patient presentations, disease course, and response to therapy.

Our mission is to close this knowledge-gap by developing precise diagnostic tools and identifying novel and non-traditional biomarkers and treatment targets to monitor and preserve cardio-metabolic health on an individual basis using a wide range of techniques spanning biophysical chemistry, molecular biology, protein biochemistry, cell biology, multiomics and animal physiology in three metabolically important tissues.

1. Skeletal muscle and intermuscular fat (IMAT): known as a critical driver for cardio-metabolic disease and diabetes, IMAT increases with aging at an accelerated rate in men and women with diabetes. We are conducting in-depth molecular metabolic profiling of skeletal muscle and IMAT using state-of-the-art techniques such as spatial multiomics, functional microscopy, and mitochondrial bioenergetics to create an individual and  detailed molecular environment profile. This profile will be correlated with the novel non-invasive imaging technique MSOT and MIROM, a photoacoustic microscopy assessment of tissue composition, to develop a non-invasive diagnostic tool for accurately assessing metabolic disease states and the impact of lifestyle interventions such as diet and exercise.

2. Circulating immune cells: chronic conditions like obesity and insulin resistance induce functional changes in immune cells, especially monocytes and T-lymphocytes, increasing their pro-inflammatory profiles. We hypothesize that certain immune cell features could potentially be used to identify non-traditional biomarkers to monitor cardio-metabolic disease and treatment response on an individual basis.

3. Central Nervous System (CNS): Specific brain regions play a crucial role in regulating major metabolic processes and cardiovascular functions. We explore neuroendocrine mechanisms that may contribute to the development of cardiometabolic diseases, aiming to uncover new therapeutic targets.

By advancing our understanding in these key areas, we strive to improve the quality of life and life expectancy for individuals with type-2 diabetes mellitus, ultimately reducing the healthcare costs associated with nonfatal cardiovascular diseases.

Who we are

Porträt Susanna Hofmann

Prof. Dr. med. Susanna Hofmann

Independent Group Leader "Women and Diabetes" (IDR-H) View profile
Porträt Sonja Frevel

Sonja Frevel

Personal Assistant IDR-H, budget and project coordinator
Porträt Marc Walter

Dr. Marc Walter

Scientific Manager and Coordinator IDR-H
Porträt Sebastian Cucuruz

Sebastian Cucuruz

TA
Porträt Sophia Dinges

Sophia Dinges

PhD Student
Porträt Yaqi Sun

Yaqi Sun

PhD Student
Porträt Thomas Worring

Thomas Worring

TA
Porträt Robby Tom

Dr. Robby Zachariah Tom

Post Doc

Shiqi Zhang

PhD Student

Sini Susan Joseph

Postdoc
Porträt Yao Zhang

Yao Zhang

PhD Student - Woman and Diabetes

Publications

Read more

2022 Scientific Article in Molecular Metabolism

Maity-Kumar, G. ; Ständer, L. ; de Angelis, M. ; Lee, S. ; Molenaar, A. ; Becker, L. ; Garrett, L. ; Amarie, O.V. ; Hölter, S.M. ; Wurst, W. ; Fuchs, H. ; Feuchtinger, A. ; Gailus-Durner, V. ; García-Cáceres, C. ; Othman, A.E. ; Brockmann, C. ; Schöffling, V.I. ; Beiser, K. ; Krude, H. ; Mroz, P.A. ; Hofmann, S.M. ; Tuckermann, J. ; DiMarchi, R.D. ; Hrabě de Angelis, M. ; Tschöp, M.H. ; Pfluger, P.T. ; Müller, T.D.

Validation of Mct8/Oatp1c1 dKO mice as a model organism for the Allan-Herndon-Dudley Syndrome.

2022 Scientific Article in Nature metabolism

Quarta, C. ; Stemmer, K. ; Novikoff, A. ; Yang, B. ; Klingelhuber, F. ; Harger, A. ; Bakhti, M. ; Bastidas-Ponce, A. ; Baugé, E. ; Campbell, J.E. ; Capozzi, M.E. ; Clemmensen, C. ; Collden, G. ; Cota, P. ; Douros, J. ; Drucker, D.J. ; Dubois, B. ; Feuchtinger, A. ; García-Cáceres, C. ; Grandl, G. ; Hennuyer, N. ; Herzig, S. ; Hofmann, S.M. ; Knerr, P.J. ; Kulaj, K. ; Lalloyer, F. ; Lickert, H. ; Liskiewicz, A. ; Liskiewicz, D. ; Maity-Kumar, G. ; Perez-Tilve, D. ; Prakash, S. ; Sanchez-Garrido, M.A. ; Zhang, Q. ; Staels, B. ; Krahmer, N. ; DiMarchi, R.D. ; Tschöp, M.H. ; Finan, B. ; Müller, T.D.

GLP-1-mediated delivery of tesaglitazar improves obesity and glucose metabolism in male mice.

2021 Scientific Article in Cell Metabolism

Zhang, Q. ; Delessa, C.T. ; Augustin, R. ; Bakhti, M. ; Collden, G. ; Drucker, D.J. ; Feuchtinger, A. ; García-Cáceres, C. ; Grandl, G. ; Harger, A. ; Herzig, S. ; Hofmann, S.M. ; Holleman, C.L. ; Jastroch, M. ; Keipert, S. ; Kleinert, M. ; Knerr, P.J. ; Kulaj, K. ; Legutko, B. ; Lickert, H. ; Liu, X. ; Luippold, G. ; Lutter, D. ; Malogajski, E. ; Tarquis Medina, M. ; Mowery, S.A. ; Blutke, A. ; Perez-Tilve, D. ; Salinno, C. ; Sehrer, L. ; DiMarchi, R.D. ; Tschöp, M.H. ; Stemmer, K. ; Finan, B. ; Wolfrum, C. ; Müller, T.D.

The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling.

Contact

Porträt Sonja Frevel

Sonja Frevel

Personal Assistant IDR-H, budget and project coordinator

Campus Neuherberg, building 3620, room 034