Woman and Diabetes
Most patients and particularly women with type-2 diabetes mellitus develop cardiovascular disease with substantial loss of life expectancy. Nonfatal cardiovascular disease contributes greatly to healthcare costs and decreased quality of life in patients with diabetes. Atherogenic dyslipidemia, also called diabetic dyslipidemia, describes the lipid abnormalities in people with insulin resistance, metabolic syndrome, and type-2 diabetes and is one of the strongest and independent predictors for cardiovascular disease. Recent efforts to reduce the risk of cardiovascular disease in diabetic patients by improving diabetic dyslipidemia with the use of combination therapy failed, supporting the need to identify novel ways to treat diabetic dyslipidemia and to simultaneously target all major components of the metabolic syndrome. The mission of my laboratory is to investigate the molecular mechanisms causing gender and sex specific differences in diabetic dyslipidemia. The laboratory uses a wide range of techniques spanning biophysical chemistry, molecular biology, protein biochemistry, cell biology and animal physiology to understand the role of lipoproteins in cellular metabolism and the immune system response.
Specific aims are:
- Dissect gender-specific differences in lipoprotein function
- Investigate potential mechanisms of exercise-induced improvements on diabetic dyslipidemia
- Determine how lipoproteins influence cellular function in specific cell populations of skeletal muscle, gut, brain and adipose tissue
- Discover novel therapies for lipid disorders and atherosclerosis
Most patients and particularly women with type-2 diabetes mellitus develop cardiovascular disease with substantial loss of life expectancy. Nonfatal cardiovascular disease contributes greatly to healthcare costs and decreased quality of life in patients with diabetes. Atherogenic dyslipidemia, also called diabetic dyslipidemia, describes the lipid abnormalities in people with insulin resistance, metabolic syndrome, and type-2 diabetes and is one of the strongest and independent predictors for cardiovascular disease. Recent efforts to reduce the risk of cardiovascular disease in diabetic patients by improving diabetic dyslipidemia with the use of combination therapy failed, supporting the need to identify novel ways to treat diabetic dyslipidemia and to simultaneously target all major components of the metabolic syndrome. The mission of my laboratory is to investigate the molecular mechanisms causing gender and sex specific differences in diabetic dyslipidemia. The laboratory uses a wide range of techniques spanning biophysical chemistry, molecular biology, protein biochemistry, cell biology and animal physiology to understand the role of lipoproteins in cellular metabolism and the immune system response.
Specific aims are:
- Dissect gender-specific differences in lipoprotein function
- Investigate potential mechanisms of exercise-induced improvements on diabetic dyslipidemia
- Determine how lipoproteins influence cellular function in specific cell populations of skeletal muscle, gut, brain and adipose tissue
- Discover novel therapies for lipid disorders and atherosclerosis