Skip to main content
Merlin Kardaß

Plettenburg Group

The Plettenburg group focusses on the development of new chemical probes with different modes of detection, targeted delivery and the design of novel inhibitors.

The Plettenburg group focusses on the development of new chemical probes with different modes of detection, targeted delivery and the design of novel inhibitors.

Research Topics

Medicinal Chemistry

A systemic exposure of bioactive substances can result in a variety of adverse effects. The specific delivery of drugs into specific cell types is therefore a powerful strategy to enhance biological activity, keeping the required drug amount low and to circumvent adverse effects resulting of uptake into different cells. Therefore, the Plettenburg group focusses on the development of cell specific ligands and the conjugation with drugs thereof.

The design of novel inhibitors for enzymes or protein-protein interactions is another core element in the research of the group. Besides classical medicinal chemistry approaches like hit optimization of hits from primary screens based on synthetic or natural product libraries also new fragment based approaches are investigated.

The optimization is done in a multi parametric fashion, taking biological activity as well as physicochemical (e.g. chemical stability, solubility) and eADME properties (e. g. cytotoxicity, plasma stability, plasma protein binding, off-target interactions) into account in order to create new lead structures.

 

New dyes and probes as chemical tolls for biological imaging are a specific focus of the Plettenburg group.

Besides molecules for novel detection methods like photoacoustic imaging, also molecules are developed for use as contrast agents, switchable dyes and biosensors for specific metabolites.

A systemic exposure of bioactive substances can result in a variety of adverse effects. The specific delivery of drugs into specific cell types is therefore a powerful strategy to enhance biological activity, keeping the required drug amount low and to circumvent adverse effects resulting of uptake into different cells. Therefore, the Plettenburg group focusses on the development of cell specific ligands and the conjugation with drugs thereof.

The design of novel inhibitors for enzymes or protein-protein interactions is another core element in the research of the group. Besides classical medicinal chemistry approaches like hit optimization of hits from primary screens based on synthetic or natural product libraries also new fragment based approaches are investigated.

The optimization is done in a multi parametric fashion, taking biological activity as well as physicochemical (e.g. chemical stability, solubility) and eADME properties (e. g. cytotoxicity, plasma stability, plasma protein binding, off-target interactions) into account in order to create new lead structures.

 

New dyes and probes as chemical tolls for biological imaging are a specific focus of the Plettenburg group.

Besides molecules for novel detection methods like photoacoustic imaging, also molecules are developed for use as contrast agents, switchable dyes and biosensors for specific metabolites.

Team

MSc Merle Weitzenberg

PhD student

Dr. Maik Siebke

Postdoc

MSc Huilong Ma

PhD student

MSc Felix Englmaier

PhD student

MSc Fabian Brunswig

PhD student

MSc Berit Blume

PhD student

M.Sc. Simon Blazy

PhD student

Dr. Haydn Ball

Postdoc

Dr. Merlin Kardaß

PhD student

Dr. Matjaz Brvar

Postdoc

Felix Neure

Technician

Valerie Gießelmann

Assistant

Prof. Oliver Plettenburg, Dr.

Director of Institute of Medicinal Chemistry View profile

Publications

Read more

Contact

Valerie Gießelmann

Assistant

Schneiderberg 1b 30167 Hannover, Building OCI, Room 5