Skip to main content
Tetko group
Helmholtz Munich | © Winfried Meining

Tetko Lab

Chemoinformatics & Chemical Biology group develops computational tools for drug discovery, including Virtual Computational Chemistry Laboratory (VCCLAB) http://www.vcclab.org and On-line CHEmical Modeling Environment (OCHEM) https://ochem.eu in close collaboration with its spin-off company BIGCHEM GmbH (https://bigchem.de). 
 

Chemoinformatics & Chemical Biology group develops computational tools for drug discovery, including Virtual Computational Chemistry Laboratory (VCCLAB) http://www.vcclab.org and On-line CHEmical Modeling Environment (OCHEM) https://ochem.eu in close collaboration with its spin-off company BIGCHEM GmbH (https://bigchem.de).

About us

Our expertise covers: 

• Development of QSPR models to predict physico-chemical and biological activity of molecules

• Use of different structure representations (topological, inductive, quantum-chemical, shape signatures, pH-dependent descriptors, etc.) as well as representation learning to achieve the most accurate predictions

• Use of a large set of linear and non-linear machine learning methods to address data of different complexity and nature

• Interpretation of structure-activity relationships

• Estimation of the accuracy of predictions

• Experimental design to identify a representative set of molecules

• Analysis and interpretation of large datasets of molecules

• Chemoinformatics software development

• Prediction of chemical reactions

 

Group members

Varvara Voinarovska

Varvara Voinarovska

Paula Torren Peraire

Paula Torren-Peraire

PhD student
Peter Hartog

Peter Hartog

PhD student
Portrait Nesma Mousa

Nesma Mousa

Master student

Mark Embrechts

Fabian Krüger

Our Research Topics

• Development of QSPR models to predict physico-chemical and biological activity of molecules

• Use of different structure representations (topological, inductive, quantum-chemical, shape signatures, pH-dependent descriptors, etc.) as well as representation learning to achieve the most accurate predictions

• Use of a large set of linear and non-linear machine learning methods to address data of different complexity and nature

• Interpretation of structure-activity relationships

• Estimation of the accuracy of predictions

• Experimental design to identify a representative set of molecules

• Analysis and interpretation of large datasets of molecules

• Chemoinformatics software development

• Prediction of chemical reactions

 

Publications

Read more

2025 Scientific Article in Chemical Science

Van Herck, J. ; Gil, M.V. ; Jablonka, K.M. ; Abrudan, A. ; Anker, A.S. ; Asgari, M. ; Blaiszik, B. ; Buffo, A. ; Choudhury, L. ; Corminboeuf, C. ; Daglar, H. ; Elahi, A.M. ; Foster, I.T. ; García, S.A. ; Garvin, M. ; Godin, G. ; Good, L.L. ; Gu, J. ; Xiao Hu, N. ; Jin, X. ; Junkers, T. ; Keskin, S. ; Knowles, T.P.J. ; Laplaza, R. ; Lessona, M. ; Majumdar, S.K. ; Mashhadimoslem, H. ; McIntosh, R.D. ; Moosavi, S.M. ; Mouriño, B. ; Nerli, F. ; Pevida, C. ; Poudineh, N. ; Rajabi-Kochi, M. ; Saar, K.L. ; Hooriabad Saboor, F. ; Sagharichiha, M. ; Schmidt, K.J. ; Shi, J. ; Simone, E. ; Svatunek, D. ; Taddei, M. ; Tetko, I.V. ; Tolnai, D. ; Vahdatifar, S. ; Whitmer, J. ; Wieland, D.C.F. ; Willumeit-Römer, R. ; Züttel, A. ; Smit, B.

Assessment of fine-tuned large language models for real-world chemistry and material science applications.

Tetko Lab

Contact

Igor Tetko

Dr. Igor Tetko

Research Group Leader