Skip to main content
Header Schnabel Lab
ZinetroN - stock.adobe.com

Computational Health Center Institute of Machine Learning in Biomedical Imaging

The Institute of Machine Learning in Biomedical Imaging (IML) focuses on research to leverage machine learning for the grand challenges in biomedical imaging in areas of unmet clinical need. Its goal is to transform the use of imaging for diagnostics and prognostics fundamentally. Novel and affordable solutions should empower clinics to make more accurate, fast, and reliable decisions for early detection, treatment planning, and improved patient outcomes. Julia Schnabel’s research focus is on applications in cancer, cardiovascular diseases, and maternal/perinatal health.

For more information on our team, up-to-date research news, and open positions, please visit our website.

The Institute of Machine Learning in Biomedical Imaging (IML) focuses on research to leverage machine learning for the grand challenges in biomedical imaging in areas of unmet clinical need. Its goal is to transform the use of imaging for diagnostics and prognostics fundamentally. Novel and affordable solutions should empower clinics to make more accurate, fast, and reliable decisions for early detection, treatment planning, and improved patient outcomes. Julia Schnabel’s research focus is on applications in cancer, cardiovascular diseases, and maternal/perinatal health.

For more information on our team, up-to-date research news, and open positions, please visit our website.

News from Our Institute

Our Research Groups

Header Schnabel Lab
ZinetroN - stock.adobe.com
Julia Schnabel

Machine Learning in Biomedical Imaging

The Institute's mission is to develop biomedical imaging applications that can fundamentally change diagnosis and prognosis. The focus is on cancer, cardiovascular disease and maternal/perinatal health.

View Research Group
AdobeStock_287138820.jpeg
metamorworks - stock.adobe.com
Georgios Kaissis

Reliable AI

Our group develops next-generation trustworthy artificial intelligence algorithms for medical applications.

View Research Group

Our Team

Juli Schnabel_Zuschnitt

Prof. Dr. Julia Anne Schnabel

Director, Institute of Machine Learning in Biomedical Imaging View profile
Porträt Cosmin Bercea

Dr. Cosmin Bercea

PostDoc
Porträt Emily Chan

Dr. Emily Chan

PostDoc

Dr. Laura Daza

PostDoc
Portrait Maxime Di Folco

Dr. Maxime Di Folco

PostDoc
Porträt Lina Felsner

Dr. Lina Felsner

PostDoc
Porträt Daniel Lang

Dr. Daniel Lang

PostDoc

Reza Nasirigerdeh

PostDoc

Sameer Ambekar

PhD Student
Portrait Hannah Eichhorn

Hannah Eichhorn

PhD student

Stefan Fischer

PhD Student

Marta Hasny

PhD Student

Johannes Kiechle

PhD Student

Ha Young Kim

PhD Student

Fryderyk Kögl

PhD Student

Jun Li

PhD Student

Natascha Niessen

PhD Student

Anna Reithmeir

PhD Student
Porträt Anneliese Riess

Anneliese Riess

PhD Student
Portrait Veronika Spieker

Veronika Spieker

PhD student

Richard Osuala

Doctoral Researcher (Visiting)

Sandra Mayer

Office & Project Management

Our Key Publications

2025 BMJ

Lekadir K, Frangi AF, Porras AR, Glocker B, Cintas C, Langlotz CP, Weicken E, Asselbergs FW, Prior F, Collins GS, Kaissis G, Tsakou G, Buvat I, Kalpathy-Cramer J, Mongan J, Schnabel JA, Kushibar K, Riklund K, Marias K, Amugongo LM, Fromont LS, Maier-Hein L, Cerdá Alberich L, Martí-Bonmatí L, Cardoso MJ, Bobowicz M, Shabani M, Tsiknakis M, Zuluaga MA, Fritzsche M-C, Camacho M, Linguraru MG, Wenzel M, De Bruijne M, Tolsgaard MG, Goisauf M, Cano Abadía M, Papanikolaou N, Lazrak N, Pujol O, Osuala R, Napel S, Joshi S, Klein S, Aussó S, Rogers WA, Puig-Bosch, X, Salahuddin Z, Starmans MPA, and the FUTURE-AI Consortium

FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare

2024 Nature

Bosch M, Kallin N, Donakonda S, Zhang JD, Wintersteller H, Hegenbarth S, Heim K, Ramirez C, Fürst A, Lattouf EI, Feuerherd M, Chattopadhyay S, Kumpesa N, Griesser V, Hoflack JC, Siebourg-Polster J, Mogler C, Swadling L, Pallett LJ, Meiser P, Manske K, de Almeida GP, Kosinska AD, Sandu I, Schneider A, Steinbacher V, Teng Y, Schnabel J, Theis F, Gehring AJ, Boonstra A, Janssen HLA, Vandenbosch M, Cuypers E, Öllinger R, Engleitner T, Rad R, Steiger K, Oxenius A, Lo W-L, Klepsch V, Baier G, Holzmann B, Maini MK, Heeren R, Murray PJ, Thimme R, Herrmann C, Protzer U, Böttcher JP, Zehn D, Wohlleber D, Lauer GM, Hofmann M, Luangsay S, and Knolle PA

A liver immune rheostat regulates CD8 T cell immunity in chronic HBV infection

2023 Cancer Cell

Wagner SJ, Reisenbüchler D, West NP, Niehues JN, Zhu J, Foersch S, Veldhuizen GP, Quirke P, Grabsch HI, van den Brandt PA, Hutchins GGA, Richman SD, Yuan T, Langer R, Jenniskens JCA, Offermans K, Mueller W, Gray R, Gruber SB, Greenson JK, Rennert G, Bonner JD, Schmolze D, Jonnagaddala J, Hawkins NJ, Ward RL, Morton D, Seymour M, Magill L, Nowak M, Hay J, Koelzer VH, Church DN, TransSCOT consortium, Matek C, Geppert C, Peng C, Zhi C, Ouyang X, James JA, Loughrey MB, Salto-Tellez M, Brenner H, Hoffmeister M, Truhn D, Schnabel JA, Boxberg M, Peng T, Kather JN

Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study

Networks and Affiliations

Logo Technische Universität München
MUDS_Logo_CMYK_final
European Lab for Learning and Intelligent Systems (ELLIS)

Contact Office

Sandra Mayer

Office & Project Management

  • Twitter:
  • LinkedIn:
Building 35.33, Room 204