Skip to main content
Helmholtz Munich | Michael Sterr

Single Cell Genomics

Dr. Michael Sterr

Single-cell based methods are key technologies to uncover the cellular complexity of biological systems, answering important and longstanding biological questions. Single-cell genomics allows to better characterize different cell types and cellular states, identify rare cell populations, and reconstruct developmental trajectories.

Single-cell based methods are key technologies to uncover the cellular complexity of biological systems, answering important and longstanding biological questions. Single-cell genomics allows to better characterize different cell types and cellular states, identify rare cell populations, and reconstruct developmental trajectories.

Research Topics

The enteroendocrine cells found in the intestinal epithelium secrete a multitude of hormones that are essential for the regulation of energy and glucose homeostasis and food intake. However, the mechanistic details, regulating their differentiation from intestinal stem cells remain elusive. Using multimodal single-cell genomics, we dissect the regulatory mechanisms of endocrine cell fate formation in the intestine.

Pancreatic beta cells secrete insulin upon food intake to regulate blood glucose levels. In diabetes, beta cell function is lost, which ultimately leads to a loss of beta cell mass. To restore functional beta cell mass, two promising approaches that are currently investigated are the regeneration from existing tissue or the replacement with stem-cell derived beta cells. The foundation of both strategies is a detailed understanding of pancreas and endocrine cell formation during embryonic development. To achieve this, we study mouse and porcine pancreas development using single-cell technologies.

 

Stem cell-derived pancreatic islets are a promising source of insulin producing beta cells for replacement therapy of diabetes. To produce functionally mature beta cells, it is important to understand in-vivo endocrine formation and apply developmental mechanisms in-vitro. At the same time, the results of the differentiation protocols have to be analyzed in great detail to identify potential improvement measures. The analysis of single-cell genomics data is an important step in this process.

The enteroendocrine cells found in the intestinal epithelium secrete a multitude of hormones that are essential for the regulation of energy and glucose homeostasis and food intake. However, the mechanistic details, regulating their differentiation from intestinal stem cells remain elusive. Using multimodal single-cell genomics, we dissect the regulatory mechanisms of endocrine cell fate formation in the intestine.

Pancreatic beta cells secrete insulin upon food intake to regulate blood glucose levels. In diabetes, beta cell function is lost, which ultimately leads to a loss of beta cell mass. To restore functional beta cell mass, two promising approaches that are currently investigated are the regeneration from existing tissue or the replacement with stem-cell derived beta cells. The foundation of both strategies is a detailed understanding of pancreas and endocrine cell formation during embryonic development. To achieve this, we study mouse and porcine pancreas development using single-cell technologies.

 

Stem cell-derived pancreatic islets are a promising source of insulin producing beta cells for replacement therapy of diabetes. To produce functionally mature beta cells, it is important to understand in-vivo endocrine formation and apply developmental mechanisms in-vitro. At the same time, the results of the differentiation protocols have to be analyzed in great detail to identify potential improvement measures. The analysis of single-cell genomics data is an important step in this process.

Who we are

Ines Kunze

Technical Assistant - Intestinal stem cells

Minas Schwager

PhD Student - Single Cell Analysis

Publications

Read more

2022 Scientific Article in Clinical Cancer Research

Weber, P. ; Künstner, A. ; Hess-Rieger, J. ; Unger, K. ; Marschner, S. ; Idel, C. ; Ribbat-Idel, J. ; Walz, C. ; Rietzler, S. ; Valeanu, L. ; Herkommer, T. ; Kreutzer, L. ; Klymenko, O. ; Kirchner, T. ; Ganswindt, U. ; Walch, A.K. ; Sterr, M. ; Lickert, H. ; Canis, M. ; Rades, D. ; Perner, S. ; Berriel Diaz, M. ; Herzig, S. ; Wollenberg, B. ; Busch, H. ; Zitzelsberger, H.

Therapy-related transcriptional subtypes in matched primary and recurrent head and neck cancer.

2021 Nature

Ansarullah ; Jain, C. ; Far, F.F. ; Homberg, S. ; Wißmiller, K. ; von Hahn, F. ; Raducanu, A. ; Schirge, S. ; Sterr, M. ; Bilekova, S. ; Siehler, J. ; Wiener, J. ; Oppenländer, L. ; Morshedi, A. ; Bastidas-Ponce, A. ; Collden, G. ; Irmler, M. ; Beckers, J. ; Feuchtinger, A. ; Grzybek, M. ; Ahlbrecht, C. ; Feederle, R. ; Plettenburg, O. ; Müller, T.D. ; Meier, M. ; Tschöp, M.H. ; Coskun, Ü. ; Lickert, H.

Author Correction: Inceptor counteracts insulin signalling in β-cells to control glycaemia.

2021 Scientific Article in Nature

Ansarullah ; Jain, C. ; Far, F.F. ; Homberg, S. ; Wissmiller, K. ; Gräfin von Hahn, F. ; Raducanu, A. ; Schirge, S. ; Sterr, M. ; Bilekova, S. ; Siehler, J. ; Wiener, J. ; Oppenländer, L. ; Morshedi, A. ; Bastidas-Ponce, A. ; Collden, G. ; Irmler, M. ; Beckers, J. ; Feuchtinger, A. ; Grzybek, M. ; Ahlbrecht, C. ; Feederle, R. ; Plettenburg, O. ; Müller, T.D. ; Meier, M. ; Tschöp, M.H. ; Coskun, Ü. ; Lickert, H.

Inceptor counteracts insulin signalling in β-cells to control glycaemia.

Contact

Dr. Michael Sterr

Single Cell Core Facility Group Leader

Campus Neuherberg, building 3620, room 034b