Schneider Lab

Chromatin Dynamics and Epigenetics

About our Research

– Decoding and harnessing the power of epigenetics –

Our mission is to decipher the molecular mechanisms underlying epigenetic inheritance and epigenetic regulation of cellular function. We will develop novel solutions for environmentally triggered diseases and promote a healthier society in a rapidly changing world.

To accommodate the 2m of DNA into the small nucleus of our cells, it interacts with histone proteins forming a structure called chromatin. This chromatin can be dynamically altered through epigenetic mechanisms such as the addition of small chemical modifications. These modifications can then serve as ON or OFF switches for our genes encoded in the DNA. If well-coordinated, such epigenetic mechanisms enable our cells to quickly react to environmental changes and adapt DNA-templated processes e.g. gene expression, to cellular needs. However, when disturbed, these epigenetic processes can cause serious cellular abnormalities with fatal disease outcomes. By decoding and harnessing the power of epigenetics we will tackle epigenetic defects in cellular decision making, cancer and metabolic diseases and thus to prevent, cure or alleviate previously untreatable diseases.

Our Research Topics

Chromatin consists of a repeating array of its fundamental unit – the nucleosome. A nucleosome comprises 146 bp of DNA wrapped around a histone octamer (formed by two copies of the core histones H2A, H2B, H3, and H4) and histone H1 protecting the linker DNA between two nucleosomes. This linker histone H1 has an important function in establishing and maintaining chromatin organisation. Like the core histones, it can be highly covalently modified, however very little is known about the function of H1 modifications.

In addition to covalent modification, histone variants can regulate chromatin dependent processes. Histone H1 possesses many variants; up to 11 in mammalian cells. We are systematically investigating the biological function of H1 variants. We want to unravel: What is their role in epigenetic reprogramming, stem cell biology and disease progression ? Our research on H1 will transform the role of histone H1 variants from  mere structural chromatin components towards specific functions in cellular plasticity, reprogramming and diseases.

The Schneider Lab

Portrait_Robert_Schneider_freigestellt
Prof. Dr. Robert Schneider

Director of the Institute of Functional Epigenetics

View profile

Portrait Till Bartke IFE
Dr. Till Bartke

Deputy Director of the Institute of Functional Epigenetics

Kevin Brockers
Dr. Kevin Brockers

Postdoc

Anne Sophie  Pepin picture
Dr. Anne-Sophie Pépin

Postdoc

Igor.png Portrait
Dr. Igor Kukhtevich

Postdoc

Porträt Jessica Pellegrino
Dr. Jessica Pellegrino

Postdoc

Dr. Andrey Tvardovskiy

Postdoc

Sandra Nitsch Self-Portrait
Dr. Sandra Nitsch

Postdoc

SamuelLeCam_Photo-Identité2023
Dr. Samuel Le Cam

Postdoc

Porträt Simona Nasiscionyte
Simona Nasiscionyte

Doctoral Researcher

Porträt Magdalena Valenta
Magdalena Valenta

Doctoral Researcher

Building 3526, Room 008

Huiwen Li selfie
Huiwen Li

Doctoral Researcher

Eric Yu-Hao Liu
Yu-Hao (Eric) Liu

Doctoral Researcher, EpiCrossBorders

Porträt Sarah Christine Pereira de Oliveira
Sarah Christine Pereira de Oliveira

Doctoral Researcher

Lorenza Mottes picture
Lorenza Mottes

Doctoral Researcher

Porträt Rattan Kaur
Rattan Kaur

Doctoral Researcher

Staff_IFE - Emilia
Emilia Izabela Cepowska

Doctoral Researcher

Porträt Katharina Arnold
Katharina Arnold

Doctoral Researcher, IFE

Paulina Rosales-Becerra

Bioinformatician

Porträt Lukas Krauß
Lukas Krauß

Computational Biologist

Portrait_Palma_Rico
Palma Rico-Lastres
Porträt Bärbel Löffler
Bärbel Löffler

Lab Manager

Portrait Thomas Gerling
Thomas Gerling

Administrative Assistant

Quote from Robert Schneider

Recent Publications

EMBO J., DOI: 10.1038/s44318-025-00571-5 (2025)

Kukhtevich, I. ; Persson, S. ; Padovani, F. ; Schneider, R. ; Cvijovic, M. ; Schmoller, K.M.

The origin of septin ring size control in budding yeast.
Mol. Cell 85, 3554-3561 (2025)

Keogh, M.C. ; Almouzni, G. ; Andrews, A.J. ; Armache, K.J. ; Arrowsmith, C.H. ; Baek, S.H. ; Bedford, M.T. ; Bernstein, E. ; Côté, J.-A. ; David, Y. ; Denu, J.M. ; Fierz, B. ; Garcia, B.A. ; Glass, K.C. ; Gozani, O. ; Helin, K. ; Henikoff, S. ; Jensen, O.N. ; Josefowicz, S.Z. ; Kelleher, N.L. ; Kutateladze, T.G. ; Lindner, H.H. ; Lu, C. ; Luger, K. ; Mallick, P. ; Musselman, C.A. ; Muir, T.W. ; Pasa-Tolic, L. ; Schneider, R. ; Shi, X. ; Shi, Y. ; Sidoli, S. ; Smith, L.M. ; Tyler, J.K. ; Wolberger, C. ; Workman, J.L. ; Strahl, B.D. ; Young, N.L.

A needed nomenclature for nucleosomes.
Mol. Nutr. Food Res., DOI: 10.1002/mnfr.70261:e70261 (2025)

Skerrett-Byrne, D.A. ; Pepin, A.-S. ; Laurent, K. ; Beckers, J. ; Schneider, R. ; Hrabě de Angelis, M. ; Teperino, R.

Dad's diet shapes the future: How paternal nutrition impacts placental development and childhood metabolic health.
Development 152:dev204384 (2025)

Liu, Y.-H. ; Schneider, R.

Histone modifications in development.
Nat. Struct. Mol. Biol. 32:405 (2025)

Throll, P. ; G Dolce, L. ; Rico-Lastres, P. ; Arnold, K. ; Tengo, L. ; Basu, S. ; Kaiser, S. ; Schneider, R. ; Kowalinski, E.

Author Correction: Structural basis of tRNA recognition by the m3C RNA methyltransferase METTL6 in complex with SerRS seryl-tRNA synthetase.
Epigenomics 16, 1061-1065 (2024)

Tvardovskiy, A. ; Lukauskas, S. ; Bartke, T.

Breaking the epigenetic code with MARCS: The Modification Atlas of Regulation by Chromatin States.
In: Chromatin Immunoprecipitation. 2024. 1-16 (Methods Mol. Biol. ; 2846)

Nitsch, S. ; Schneider, R.

Native ChIP: Studying the genome-wide distribution of histone modifications in cells and tissue.
Nat. Rev. Genet., DOI: 10.1038/s41576-024-00758-2 (2024)

Tvardovskiy, A. ; Lukauskas, S.

Decoding the language of chromatin modifications with MARCS.
Nat. Struct. Mol. Biol., DOI: 10.1038/s41594-024-01341-3 (2024)

Throll, P. ; G Dolce, L. ; Rico-Lastres, P. ; Arnold, K. ; Tengo, L. ; Basu, S. ; Kaiser, S. ; Schneider, R. ; Kowalinski, E.

Structural basis of tRNA recognition by the m3C RNA methyltransferase METTL6 in complex with SerRS seryl-tRNA synthetase.
Nucleic Acids Res. 52, 6129-6144 (2024)

Stadler, M. ; Lukauskas, S. ; Bartke, T. ; Müller, C.L.

asteRIa enables robust interaction modeling between chromatin modifications and epigenetic readers.
Nature 628:E6 (2024)

Lukauskas, S. ; Tvardovskiy, A. ; Nguyen, N.V. ; Stadler, M. ; Faull, P. ; Ravnsborg, T. ; Özdemir Aygenli, B. ; Dornauer, S. ; Flynn, H. ; Lindeboom, R.G.H. ; Barth, T.K. ; Brockers, K. ; Hauck, S.M. ; Vermeulen, M. ; Snijders, A.P. ; Müller, C.L. ; DiMaggio, P.A. ; Jensen, O.N. ; Schneider, R. ; Bartke, T.

Publisher Correction: Decoding chromatin states by proteomic profiling of nucleosome readers.
Nat. Commun. 15:2960 (2024)

Yamaguchi, K. ; Chen, X. ; Rodgers, B. ; Miura, F. ; Bashtrykov, P. ; Bonhomme, F. ; Salinas-Luypaert, C. ; Haxholli, D. ; Gutekunst, N. ; Özdemir Aygenli, B. ; Ferry, L. ; Kirsh, O. ; Laisné, M. ; Scelfo, A. ; Ugur, E. ; Arimondo, P.B. ; Leonhardt, H. ; Kanemaki, M.T. ; Bartke, T. ; Fachinetti, D. ; Jeltsch, A. ; Ito, T. ; Defossez, P.A.

Non-canonical functions of UHRF1 maintain DNA methylation homeostasis in cancer cells.
Nature 627, 671-679 (2024)

Lukauskas, S. ; Tvardovskiy, A. ; Nguyen, N.V. ; Stadler, M. ; Faull, P. ; Ravnsborg, T. ; Özdemir Aygenli, B. ; Dornauer, S. ; Flynn, H. ; Lindeboom, R.G.H. ; Barth, T.K. ; Brockers, K. ; Hauck, S.M. ; Vermeulen, M. ; Snijders, A.P. ; Müller, C.L. ; DiMaggio, P.A. ; Jensen, O.N. ; Schneider, R. ; Bartke, T.

Decoding chromatin states by proteomic profiling of nucleosome readers.
Nat. Struct. Mol. Biol., DOI: 10.1038/s41594-023-01179-1 (2023)

Basu, S. ; Shukron, O. ; Hall, D.W. ; Parutto, P. ; Ponjavic, A. ; Shah, D.I. ; Boucher, W. ; Lando, D. ; Zhang, W. ; Reynolds, N. ; Sober, L.H. ; Jartseva, A. ; Ragheb, R. ; Ma, X. ; Cramard, J. ; Floyd, R. ; Balmer, J. ; Drury, T.A. ; Carr, A.R. ; Needham, L.M. ; Aubert, A. ; Communie, G. ; Gor, K. ; Steindel, M. ; Morey, L. ; Blanco, E. ; Bartke, T. ; di Croce, L. ; Berger, I. ; Schaffitzel, C. ; Lee, S.F. ; Stevens, T.J. ; Klenerman, D. ; Hendrich, B.D. ; Holcman, D. ; Laue, E.D.

Publisher Correction: Live-cell three-dimensional single-molecule tracking reveals modulation of enhancer dynamics by NuRD.
Nat. Struct. Mol. Biol. 30, 1628-1639 (2023)

Basu, S. ; Shukron, O. ; Hall, D. ; Parutto, P. ; Ponjavic, A. ; Shah, D. ; Boucher, W. ; Lando, D. ; Zhang, W. ; Reynolds, N. ; Sober, L.H. ; Jartseva, A. ; Ragheb, R. ; Ma, X. ; Cramard, J. ; Floyd, R. ; Balmer, J. ; Drury, T.A. ; Carr, A.R. ; Needham, L.M. ; Aubert, A. ; Communie, G. ; Gor, K. ; Steindel, M. ; Morey, L. ; Blanco, E. ; Bartke, T. ; di Croce, L. ; Berger, I. ; Schaffitzel, C. ; Lee, S.F. ; Stevens, T.J. ; Klenerman, D. ; Hendrich, B.D. ; Holcman, D. ; Laue, E.D.

Live-cell three-dimensional single-molecule tracking reveals modulation of enhancer dynamics by NuRD.
Epigenetics@HelmholtzMunich Banner

epigenetics@HelmholtzMunich

The Scheneider Lab is part of "Epigenentics at Helmholtz Munich"

Visit its page

Contact

Portrait Thomas Gerling
Thomas Gerling

Administrative Assistant

Contact Institute Office

Epigenetics at Helmholtz Munich logo
Epigenetics Coordination Office