Cellular Decision Making

Scialdone Lab

Physics and data-based modelling of cellular decision making

About our Research

We use a multidisciplinary approach to understand the fundamental biological processes behind cellular decision-making.

Cellular decision-making is a crucial process in the development of multicellular organisms, during which cells differentiate from a single type to the multitude of cell types that compose the adult organism. In this context, complex regulatory events occur both at the single-cell level and at the level of groups of interacting cells.

Recently developed experimental techniques have made it possible to generate a vast amount of large-scale biological data at the single-cell level. By using state-of-the-art and newly developed computational methods, we combine information obtained from the analysis of these data with the insights offered by physical models that can guide interpretation.

Our goal is to decode the molecular mechanisms underlying cellular decision-making at 

1. the single-cell level, by looking at the interaction between gene expression and chromatin spatial organization during decision making


2. the inter-cellular level, by dissecting the role of cellular communication in collective cellular decision making 

One of the model systems we work with is early mouse embryos, where a complex array of cell differentiation and migration takes place. In close collaboration with experimental groups, we combine methods from statistics, information theory and physics to fully exploit the data and construct general, quantitative models.

Our Research Topics

Cells in the embryo have the remarkable ability to self-organize in complex spatial patterns. One of the first patterns to form determines where the anterior and the posterior region will be, and its establishment is controlled by a set of cells that migrate together and mark the anterior region. 

We use machine learning and artificial intelligence to analyze experimental data and, based on this, develop physical models to get insights into the mechanisms underlying the formation of the anterior-posterior axis. This will help us understand how embryos get their shape right and how cellular signalling influences the ‘right’ cell fate.

The Scialdone Lab

Portrait Antonio Scialdone
Dr. Antonio Scialdone

Group Leader

Portrait Gabriele Lubatti
Gabriele Lubatti

Doctoral Researcher

Marco Stock

Doctoral Researcher

Portrait of Martin Miranda
Dr. Martin Miranda

Postdoc

Joshua Odo Clauss

Intern

Recent Publications

Beer, S. ; Wange, L.E. ; Zhang, X. ; Kuklik-Roos, C. ; Enard, W. ; Hammerschmidt, W. ; Scialdone, A. ; Kempkes, B.

EBNA2-EBF1 complexes promote MYC expression and metabolic processes driving S-phase progression of Epstein-Barr virus-infected B cells.
Cell Rep. 38:110547 (2022)

Ruiz Tejada Segura, M.L. ; Abou Moussa, E. ; Garabello, E. ; Nakahara, T.S. ; Makhlouf, M. ; Mathew, L.S. ; Wang, L. ; Valle, F. ; Huang, S.S.Y. ; Mainland, J.D. ; Caselle, M. ; Osella, M. ; Lorenz, S. ; Reisert, J. ; Logan, D.W. ; Malnic, B. ; Scialdone, A. ; Saraiva, L.R.

A 3D transcriptomics atlas of the mouse nose sheds light on the anatomical logic of smell.
Nat. Struct. Mol. Biol. 29:282 (2022)

Iturbide Martinez De Albeniz, A. ; Ruiz Tejada Segura, M.L. ; Noll, C. ; Schorpp, K.K. ; Rothenaigner, I. ; Lubatti, G. ; Agami, A. ; Hadian, K. ; Scialdone, A. ; Torres-Padilla, M.E.

Author Correction: Retinoic acid signaling is critical during the totipotency window in early mammalian development.
Nat. Genet. 54, 318–327 (2022)

Nakatani, T. ; Lin, J. ; Ji, F. ; Ettinger, A. ; Pontabry, J. ; Tokoro, M. ; Altamirano-Pacheco, L. ; Fiorentino, J. ; Mahammadov, E. ; Hatano, Y. ; Van Rechem, C. ; Chakraborty, D. ; Ruiz-Morales, E.R. ; Scialdone, A. ; Yamagata, K. ; Whetstine, J.R. ; Sadreyev, R.I. ; Torres-Padilla, M.E.

DNA replication fork speed underlies cell fate changes and promotes reprogramming.
Nature 600, 285-289 (2021)

Tyser, R.C.V. ; Mahammadov, E. ; Nakanoh, S. ; Vallier, L. ; Scialdone, A. ; Srinivas, S.

Single-cell transcriptomic characterization of a gastrulating human embryo.
Nat. Metab. 3, 1091-1108 (2021)

Lima, A. ; Lubatti, G. ; Burgstaller, J. ; Hu, D. ; Green, A.P. ; di Gregorio, A. ; Zawadzki, T. ; Pernaute, B. ; Mahammadov, E. ; Perez-Montero, S. ; Dore, M. ; Sanchez, J.M. ; Bowling, S. ; Sancho, M. ; Kolbe, T. ; Karimi, M.M. ; Carling, D. ; Jones, N. ; Srinivas, S. ; Scialdone, A. ; Rodriguez, T.A.

Cell competition acts as a purifying selection to eliminate cells with mitochondrial defects during early mouse development.
Nat. Struct. Mol. Biol. 28, 521-532 (2021)

Iturbide Martinez De Albeniz, A. ; Ruiz Tejada Segura, M.L. ; Noll, C. ; Schorpp, K.K. ; Rothenaigner, I. ; Ruiz-Morales, E.R. ; Lubatti, G. ; Agami, A. ; Hadian, K. ; Scialdone, A. ; Torres-Padilla, M.E.

Retinoic acid signaling is critical during the totipotency window in early mammalian development.
Science 371:eabb2986 (2021)

Tyser, R.C.V. ; Ibarra-Soria, X. ; McDole, K. ; A Jayaram, S. ; Godwin, J. ; van den Brand, T.A.H. ; Miranda, A.M.A. ; Scialdone, A. ; Keller, P.J. ; Marioni, J.C. ; Srinivas, S.

Characterization of a common progenitor pool of the epicardium and myocardium.
Annu. Rev. Genet. 54, 167-187 (2020)

Fiorentino, J. ; Torres-Padilla, M.E. ; Scialdone, A.

Measuring and modeling single-cell heterogeneity and fate decision in mouse embryos.
Mol. Metab. 40:101038 (2020)

Huang, S.S.Y. ; Makhlouf, M. ; AbouMoussa, E.H. ; Ruiz Tejada Segura, M.L. ; Mathew, L.S. ; Wang, K. ; Leung, M.C. ; Chaussabel, D. ; Logan, D.W. ; Scialdone, A. ; Garand, M. ; Saraiva, L.R.

Differential regulation of the immune system in a brain-liver-fats organ network during short-term fasting.
Bioinformatics 36, 4291-4295 (2020)

Angerer, P. ; Fischer, D.S. ; Theis, F.J. ; Scialdone, A. ; Marr, C.

Automatic identification of relevant genes from low-dimensional embeddings of single-cell RNA-seq data.

Mrozek-Gorska, P. ; Buschle, A. ; Pich, D. ; Schwarzmayr, T. ; Fechtner, R. ; Scialdone, A. ; Hammerschmidt, W.

Epstein-Barr virus reprograms human B lymphocytes immediately in the prelatent phase of infection.
Chem. Senses 44, 7-9 (2018)

Manoel, D. ; Makhlouf, M. ; Scialdone, A. ; Saraiva, L.R.

Interspecific variation of olfactory preferences in flies, mice, and humans.
Mol. Syst. Biol. 14:e8046 (2018)

Griffiths, J.A. ; Scialdone, A. ; Marioni, J.C.

Using single-cell genomics to understand developmental processes and cell fate decisions.
Sci. Rep. 8:1801 (2018)

Sarrach, S. ; Huang, Y. ; Niedermeyer, S. ; Hachmeister, M. ; Fischer, L. ; Gille, S. ; Pan, M. ; Mack, B. ; Kranz, G. ; Libl, D. ; Merl-Pham, J. ; Hauck, S.M. ; Paoluzzi Tomada, E. ; Kieslinger, M. ; Jeremias, I. ; Scialdone, A. ; Gires, O.

Spatiotemporal patterning of EpCAM is important for murine embryonic endo-And mesodermal differentiation.
Nature 552, 239-243 (2017)

Shahbazi, M.N. ; Scialdone, A. ; Skorupska, N. ; Weberling, A. ; Recher, G. ; Zhu, M. ; Jedrusik, A. ; Devito, L.G. ; Noli, L. ; Macaulay, I.C. ; Buecker, C. ; Khalaf, Y. ; Ilic, D. ; Voet, T. ; Marioni, J.C. ; Zernicka-Goetz, M.

Pluripotent state transitions coordinate morphogenesis in mouse and human embryos.
Methods 85, 54-61 (2015)

Scialdone, A. ; Natarajan, K.N. ; Saraiva, L.R. ; Proserpio, V. ; Teichmann, S.A. ; Stegle, O. ; Marioni, J.C. ; Buettner, F.

Computational assignment of cell-cycle stage from single-cell transcriptome data.
Epigenetics@HelmholtzMunich Banner

epigenetics@HelmholtzMunich

The Scialdone Lab is part of "Epignenetics at Helmholtz Munich"

Visit its page

Contact

No persons found