Skip to main content
Rasi - stock.adobe.com
01:0

Molecular Targets and Therapeutics Center

The focus of the Molecular Targets and Therapeutics Center is the investigation of metabolic processes and molecular mechanisms controlling physiological processes in health and disease. This information enables the identification of new approaches for therapies. Novel pathways and molecular mechanisms in cell death, immunity, epigenetics and RNA regulation are discovered and characterized. Advanced integrative structural biology techniques are used to unravel molecular mechanisms as a basis for structure-based drug discovery. The vision of the Center is to ultimately translate this knowledge into effective and safe new therapies.

The focus of the Molecular Targets and Therapeutics Center is the investigation of metabolic processes and molecular mechanisms controlling physiological processes in health and disease. This information enables the identification of new approaches for therapies. Novel pathways and molecular mechanisms in cell death, immunity, epigenetics and RNA regulation are discovered and characterized. Advanced integrative structural biology techniques are used to unravel molecular mechanisms as a basis for structure-based drug discovery. The vision of the Center is to ultimately translate this knowledge into effective and safe new therapies.

Our Research Areas

ImageBank4U - stock.adobe.com

Cell Death and Immunity

Misdirected signaling processes are triggers and accelerators of most human diseases. Only a profound understanding of all biological details is the prerequisite for the development of innovative and highly effective therapeutic approaches to serious and cost-intensive diseases such as allergies, autoimmune diseases, and cancers. One signaling pathway that is particularly crucial for disease, recovery, and death is ferroptosis, in which cell death for degenerated cells is programmed via iron metabolism. If it is possible to control cell death by means of ferroptosis, it will be possible to cure cancer and other diseases.

vchalup - stock.adobe.com

Epigenetics and RNA Regulation

Epigenetics investigates which factors determine the activity of individual genes - and thus the development of a cell and also its daughter cells. At the MTTC, the mechanisms underlying transgenerational inheritance due to metabolic or environmental influences (e.g. high-fat diet) are studied (i.e. not changes in the genome itself). In the area of post-transcriptional gene regulation, long non-coding RNAs and RNA-binding proteins are interesting new drug targets. To develop innovative therapeutic approaches, novel approaches combining integrative structural biology with chemical probing are applied to study long non-coding RNAs and large RNA structures as well as protein/RNA interactions in protein-RNA complexes.

©Christoph Burgstedt - stock.adobe.com

Integrative Structural Biology

Integrative structural biology includes a whole range of biophysical methods with which the structure of all macromolecules in the human body as well as their ability to change it and their mutual influence can be shown. The main techniques are X-ray structure analysis, nuclear magnetic resonance spectroscopy and cryo-electron microscopy. None of these techniques alone is capable of elucidating entire complexes of macromolecules, but when used in concert, a very accurate picture is obtained of how these giant molecules look, change, and can work together, and also where sites on these molecules present themselves as drug targets. The comprehensive knowledge of how macromolecules (proteins, RNA and DNA) look like and interact in complexes is essential to detect errors in biological processes and thus the causes of diseases as well as to develop drugs against these diseases. Furthermore, the aforementioned methods can also be used to test drugs and to improve them.

candy1812 - stock.adobe.com

Drug Discovery

For a long time, drugs were determined by testing large, already known substance libraries in serial studies with regard to their effect on certain molecules or even whole cells. Recently, however, more and more attempts have been made to identify docking points on protein surfaces and contact surfaces in protein complexes and to construct small molecules that influence these proteins or their interaction and thus serve as drugs. In both approaches, precise knowledge of the biological processes that are disturbed in the respective disease is necessary for the optimal design of the drugs. In the development of new drugs, the minimization of side effects, as well as the metabolization of the drugs play a major role. A prerequisite for a good drug is that it actually reaches its target site after absorption and is not degraded beforehand. At the same time, it must not accumulate in the body or have harmful side effects that nullify the positive effect. This requires the development of lead molecules, of which chemically modified variants are tested in many serial studies until the optimal drug is found, which can then also be tested on patients.

©Paulista - stock.adobe.com

Immune therapies and vaccines

Not least the Corona pandemic has shown how fragile our immune system is against viral attacks. However, it is not only attacks from outside that injure our immune system; our own body can also turn against the immune system and trigger autoimmunity against certain of the body's own molecules and associated diseases. At the MTTC, antibodies, vaccines and other therapies against dangerous viral diseases such as hepatitis B virus, Epstein-Barr virus or herpes viruses, but also against autoimmune diseases such as cancer are being developed and brought to clinical trials.

Our experts at Molecular Targets and Therapeutics Center

Prof. Martin Göttlicher

Director of the Institute for Molecular Toxicology and Pharmacology / Group Leader Small Molecule Modulators of Intermediary Metabolism

Latest publications of Our Department

Read more

2022 Scientific Article in PLoS Genetics

Butler-Laporte, G. ; Povysil, G. ; Kosmicki, J.A. ; Cirulli, E.T. ; Drivas, T. ; Furini, S. ; Saad, C. ; Schmidt, A. ; Olszewski, P.K. ; Korotko, U. ; Quinodoz, M. ; Çelik, E. ; Kundu, K. ; Walter, K. ; Jung, J. ; Stockwell, A.D. ; Sloofman, L.G. ; Jordan, D.M. ; Thompson, R.C. ; Del Valle, D. ; Simons, N. ; Cheng, E. ; Sebra, R. ; Schadt, E.E. ; Kim-Schulze, S. ; Gnjatic, S. ; Merad, M. ; Buxbaum, J.D. ; Beckmann, N.D. ; Charney, A.W. ; Przychodzen, B. ; Chang, T. ; Pottinger, T.D. ; Shang, N. ; Brand, F. ; Fava, F. ; Mari, F. ; Chwialkowska, K. ; Niemira, M. ; Pula, S. ; Baillie, J.K. ; Stuckey, A. ; Salas, A. ; Bello, X. ; Pardo-Seco, J. ; Gómez-Carballa, A. ; Rivero-Calle, I. ; Martinón-Torres, F. ; Ganna, A. ; Karczewski, K.J. ; Veerapen, K. ; Bourgey, M. ; Bourque, G. ; Eveleigh, R.J. ; Forgetta, V. ; Morrison, D. ; Langlais, D. ; Lathrop, M. ; Mooser, V. ; Nakanishi, T. ; Frithiof, R. ; Hultström, M. ; Lipcsey, M. ; Marincevic-Zuniga, Y. ; Nordlund, J. ; Schiabor Barrett, K.M. ; Lee, W. ; Bolze, A. ; White, S. ; Riffle, S. ; Tanudjaja, F. ; Sandoval, E. ; Neveux, I. ; Dabe, S. ; Casadei, N. ; Motameny, S. ; Alaamery, M. ; Massadeh, S. ; Aljawini, N. ; Almutairi, M.S. ; Arabi, Y.M. ; Alqahtani, S.A. ; Al Harthi, F.S. ; Almutairi, A. ; Alqubaishi, F. ; Alotaibi, S. ; Binowayn, A. ; Alsolm, E.A. ; El Bardisy, H. ; Fawzy, M. ; Cai, F. ; Soranzo, N. ; Butterworth, A. ; COVID-19 Host Genetics Initiative ; DeCOI Host Genetics Group ; GEN-COVID Multicenter Study (Italy) ; Mount Sinai Clinical Intelligence Center ; GEN-COVID consortium (Spain) ; GenOMICC Consortium ; Japan COVID-19 Task Force ; Regeneron Genetics Center ; Geschwind, D.H. ; Arteaga, S. ; Stephens, A.E. ; Butte, M.J. ; Boutros, P.C. ; Yamaguchi, T.N. ; Tao, S. ; Eng, S. ; Sanders, T. ; Tung, P.J. ; Broudy, M.E. ; Pan, Y. ; González, A.J. ; Chavan, N. ; Johnson, R. ; Pasaniuc, B. ; Yaspan, B.L. ; Smieszek, S. ; Rivolta, C. ; Bibert, S. ; Bochud, P.Y. ; Dabrowski, M. ; Zawadzki, P. ; Sypniewski, M. ; Kaja, E. ; Chariyavilaskul, P. ; Nilaratanakul, V. ; Hirankarn, N. ; Shotelersuk, V. ; Pongpanich, M. ; Phokaew, C. ; Chetruengchai, W. ; Tokunaga, K. ; Sugiyama, M. ; Kawai, Y. ; Hasegawa, T. ; Naito, T. ; Namkoong, H. ; Edahiro, R. ; Kimura, A. ; Ogawa, S. ; Kanai, T. ; Fukunaga, K. ; Imoto, S. ; Miyano, S. ; Mangul, S. ; Abedalthagafi, M.S. ; Zeberg, H. ; Grzymski, J.J. ; Washington, N.L. ; Ossowski, S. ; Ludwig, K.U. ; Schulte, E.C. ; Riess, O. ; Moniuszko, M. ; Kwasniewski, M. ; Mbarek, H. ; Ismail, S.I. ; Verma, A. ; Goldstein, D.B. ; Kiryluk, K. ; Renieri, A. ; Richards, J.B.

Exome-wide association study to identify rare variants influencing COVID-19 outcomes: Results from the Host Genetics Initiative.

Contact

Director of Operations

Dr. Eva Schlosser

Director of Operations