Schmoller Lab

Cell and Organelle Size Control

About our Research

We study the impact of cell size on cell function and investigate how cells coordinate growth and division to control their size.

The human body consists of around 40 trillion individual cells. Each of them is a structurally distinct, (largely) independent, and self-sustaining unit. The size of a cell is a fundamental property, which is tightly controlled for each cell but can vary dramatically between cell types, and depend on external or internal cues. In recent years, cell size emerged as a major factor controlling cell function. For example, cell growth and biosynthetic processes, including protein production, are tightly linked to cell size. In addition, the size of subcellular organelles is well-defined and adjusted according to the overall cell size. Finally, cell size can play a regulatory role during specific biological processes such as early embryonic development. Given its central role in cell function, it may not be surprising that diseases such as cancer as well as aging often go along with a misregulation of cell size. Thus, understanding how cells regulate their size and the molecular processes through which cell size governs cell function is of paramount importance to capture the complexity of disease emergence and guide diagnostics and therapeutic approaches.

Many of the fundamental processes through which cell size impacts cell function are broadly conserved across eukaryotes. To address these questions, we, therefore, use two powerful and evolutionary distant model organisms: The budding yeast S. cerevisiae and the green alga C. reinhardtii. Besides the obvious advantages of these simple and well-characterized models, we can control the size of both organisms. Building on our previous work, we can genetically tune budding yeast cell size by controlled expression of physiological cell size regulators. For C. reinhardtii, we can employ its diurnal growth cycle to control the size with light and nutrients.

Using an interdisciplinary approach that combines quantitative biology, live-cell microscopy and AI-based image analysis, as well as mathematical modelling, we aim to identify conserved regulatory principles that will then guide our understanding of cell size in the context of human cells and diseases.

Our Research Topics

Each cell in an organism has to control its size by balancing cell growth, division, and cell death. In particular, proliferating cells coordinate cell division with cell size and growth. In yeast as well as in humans, this coordination occurs in part at the G1/S transition: Cells that are smaller at their birth grow more before they divide compared to cells that are born bigger. Not surprisingly then, cancer cells – which lost the regulation of growth and division – often have altered and more variable sizes compared to healthy cells. Using live-cell time-lapse imaging combined with yeast genetics and molecular biology, we aim to understand the molecular processes through which cells can sense their own size, and adapt their size upon environmental changes such as changing nutrient conditions.

 

Relevant publications:

Team members involved in this project: Yagya, Benedikt

The Schmoller Lab

Portrait Kurt Schmoller
Dr. Kurt Schmoller

Group Leader

Portait Francesco Padovani
Dr. Francesco Padovani

Postdoc

Benedikt Mairhörmann
Benedikt Mairhörmann

Doctoral Researcher

Alissa Finster

Doctoral Researcher

Portrait Arohi Khurana
Arohi Khurana

Doctoral Researcher, EpiCrossBorders

LuisaHernandezGötz-Selfportrait
Luisa Hernández Götz

Doctoral researcher

Daniela Bureik
Daniela Bureik

Research Technician

Portrait Thomas Gerling
Thomas Gerling

Administrative Assistant

Recent Publications

EMBO J., DOI: 10.1038/s44318-025-00571-5 (2025)

Kukhtevich, I. ; Persson, S. ; Padovani, F. ; Schneider, R. ; Cvijovic, M. ; Schmoller, K.M.

The origin of septin ring size control in budding yeast.
MicroPubl. Biol. 2025, DOI: 10.17912/micropub.biology.001472 (2025)

Al-Refaie, N. ; Padovani, F. ; Schmoller, K.M. ; Cabianca, D.S.

Localization and expression dynamics of an RNA Pol I core subunit in response to fasting in C. elegans.
EMBO J., DOI: 10.1038/s44318-024-00227-w (2024)

Chatzitheodoridou, D. ; Bureik, D. ; Padovani, F. ; Nadimpalli, K.V. ; Schmoller, K.M.

Decoupled transcript and protein concentrations ensure histone homeostasis in different nutrients.

Vitacolonna, M. ; Bruch, R. ; Agaçi, A. ; Nürnberg, E. ; Cesetti, T. ; Keller, F. ; Padovani, F. ; Sauer, S. ; Schmoller, K.M. ; Reischl, M. ; Hafner, M. ; Rudolf, R.

A multiparametric analysis including single-cell and subcellular feature assessment reveals differential behavior of spheroid cultures on distinct ultra-low attachment plate types.
Nat. Cell Biol., DOI: 10.1038/s41556-024-01512-w (2024)

Al-Refaie, N. ; Padovani, F. ; Hornung, J. ; Pudelko, L ; Binando, F. ; Del Carmen Fabregat, A. ; Zhao, Q. ; Towbin, B.D. ; Cenik, E.S. ; Stroustrup, N. ; Padeken, J. ; Schmoller, K.M. ; Cabianca, D.S.

Fasting shapes chromatin architecture through an mTOR/RNA Pol I axis.
EMBO J., DOI: 10.1038/s44318-024-00183-5 (2024)

Roussou, R. ; Metzler, D. ; Padovani, F. ; Thoma, F. ; Schwarz, R. ; Shraiman, B. ; Schmoller, K.M. ; Osman, C.

Real-time assessment of mitochondrial DNA heteroplasmy dynamics at the single-cell level.
Physiol. Rev. 104, 1679-1717 (2024)

Chadha, Y. ; Khurana, A. ; Schmoller, K.M.

Eukaryotic cell size regulation and its implications for cellular function and dysfunction.
Radiol. Artif. Intell. 5:e220239 (2023)

Mairhörmann, B. ; Castelblanco, A. ; Häfner, F. ; Koliogiannis, V. ; Haist, L. ; Winter, D. ; Flemmer, A.W. ; Ehrhardt, H. ; Stöcklein, S. ; Dietrich, O. ; Förster, K. ; Hilgendorff, A. ; Schubert, B.

Automated MRI lung segmentation and 3D morphologic features for quantification of neonatal lung disease.
BioSpektrum 29, 378-380 (2023)

Mairhörmann, B. ; Padovani, F. ; Schmoller, K.M.

Zugängliche KI-Algorithmen für bessere Zellmikroskopie.
Nat. Struct. Mol. Biol. 30, 1549-1560 (2023)

Seel, A. ; Padovani, F. ; Mayer, M. ; Finster, A. ; Bureik, D. ; Thoma, F. ; Osman, C. ; Klecker, T. ; Schmoller, K.M.

Regulation with cell size ensures mitochondrial DNA homeostasis during cell growth.
Cell Rep. 41:111656 (2022)

Kukhtevich, I. ; Rivero-Romano, M. ; Rakesh, N. ; Bheda, P. ; Chadha, Y. ; Rosales-Becerra, P. ; Hamperl, S. ; Bureik, D. ; Dornauer, S. ; Dargemont, C. ; Kirmizis, A. ; Schmoller, K.M. ; Schneider, R.

Quantitative RNA imaging in single live cells reveals age-dependent asymmetric inheritance.
J. Cell Sci. 135:jcs260634 (2022)

Chatzitheodoridou, D. ; D'Ario, M. ; Jones, I. ; Piñeros, L. ; Serbanescu, D. ; O'Donnell, F. ; Cadart, C. ; Swaffer, M.P.

Meeting report - Cell size and growth: from single cells to the tree of life.
Biophys. J. 121, 4702-4713 (2022)

Freitag, M. ; Jaklin, S. ; Padovani, F. ; Radzichevici, E. ; Zernia, S. ; Schmoller, K.M. ; Stigler, J.

Single-molecule experiments reveal the elbow as an essential folding guide in SMC coiled coil arms.
BMC Biol. 20:174 (2022)

Padovani, F. ; Mairhörmann, B. ; Falter-Braun, P. ; Lengefeld, J. ; Schmoller, K.M.

Segmentation, tracking and cell cycle analysis of live-cell imaging data with Cell-ACDC.

Schmoller, K.M. ; Lanz, M.C. ; Kim, J. ; Koivomagi, M. ; Qu, Y. ; Tang, C. ; Kukhtevich, I. ; Schneider, R. ; Rudolf, F. ; Moreno, D.F. ; Aldea, M. ; Lucena, R. ; Skotheim, J.M.

Whi5 is diluted and protein synthesis does not dramatically increase in pre-Start G1.
Mol. Cell 81, 4861-4875.e7 (2021)

Swaffer, M.P. ; Kim, J. ; Chandler-Brown, D. ; Langhinrichs, M. ; Marinov, G.K. ; Greenleaf, W.J. ; Kundaje, A. ; Schmoller, K.M. ; Skotheim, J.M.

Transcriptional and chromatin-based partitioning mechanisms uncouple protein scaling from cell size.

Claude, K.-L. ; Bureik, D. ; Chatzitheodoridou, D. ; Adarska, P. ; Singh, A. ; Schmoller, K.M.

Transcription coordinates histone amounts and genome content.
Epigenetics@HelmholtzMunich Banner

epigenetics@HelmholtzMunich

The Schmoller Lab is part of "Epigenetics at Helmholtz Munich"

Visit its page

Contact

Portrait Thomas Gerling
Thomas Gerling

Administrative Assistant

Contact Institute Office

Epigenetics at Helmholtz Munich logo
Epigenetics Coordination Office