Close-up of a scientist holding a microbiological tablet with antibodies in the laboratory, an experiment with human antibodies.

Molecular Metabolism in Adipose & Diabetes Lab (M²A Lab)

Our goal is to uncover new molecular mechanisms underlying adipose tissue dysfunction and insulin resistance, which are central contributors to the development of type 2 diabetes. By dissecting the molecular basis of impaired adipose tissue function, we aim to identify novel therapeutic targets and strategies for preventing and treating type 2 diabetes.

The research in our group focuses on identifying novel regulators of insulin signaling and lipolysis in adipocytes—two interconnected processes that are often impaired in insulin-resistant states. By leveraging advanced molecular biology approaches, such as the development of genetically encoded biosensors, high-content functional screens, and viral-based gene delivery systems, we aim to dissect the signaling networks and metabolic alterations that accompany insulin resistance. Through this mechanistic understanding, we strive to pinpoint new druggable targets and facilitate the discovery of next-generation insulin sensitizers, ultimately advancing therapeutic options for individuals living with type 2 diabetes.

Our goal is to uncover new molecular mechanisms underlying adipose tissue dysfunction and insulin resistance, which are central contributors to the development of type 2 diabetes. By dissecting the molecular basis of impaired adipose tissue function, we aim to identify novel therapeutic targets and strategies for preventing and treating type 2 diabetes.

The research in our group focuses on identifying novel regulators of insulin signaling and lipolysis in adipocytes—two interconnected processes that are often impaired in insulin-resistant states. By leveraging advanced molecular biology approaches, such as the development of genetically encoded biosensors, high-content functional screens, and viral-based gene delivery systems, we aim to dissect the signaling networks and metabolic alterations that accompany insulin resistance. Through this mechanistic understanding, we strive to pinpoint new druggable targets and facilitate the discovery of next-generation insulin sensitizers, ultimately advancing therapeutic options for individuals living with type 2 diabetes.

Scientists at Molecular Metabolism in Adipose & Diabetes Lab (M²A Lab)

Gencer_Sancar_MedKlinik_Portraits213_ 135
Dr. Gencer Sancar

Group Leader, Scientist

Profil anzeigen
Lisa Jacob

TA

Judith_Leonie_Nono
Judith Leonie Nono

MTA

David Arturo Juarez Lopez

TA

Birgit Schreiner

Study Nurse

Eva Albrecht

MD student

Olivia White

MD student

Toma Pozharliev

BSc Student

News & Research Highlights

Our aims

1)

We recently identified a novel signaling cascade that mediates the FGF1/PDE4D anti-lipolytic pathway. Furthermore, we demonstrated that this pathway is essential for adipogenesis and insulin signaling in both mouse and human adipocytes.

Activation of the FGF1/FGFR1 signaling pathway induces phosphorylation of PDE4D depending on RAF and PAKs. Phosphorylation of PDE4D at S44 is required for inhibition of the cAMP/PKA signaling cascade. Consequently, phosphorylation of HSL at S660 is reduced, resulting in the suppression of lipolysis. Chronic inhibition of PAKs impairs adipogenesis and induces insulin resistance indicating a direct involvement of PAKs in adipocyte metabolism.

See publication 

2)

 We have recently developed a high-throughput method to measure intracellular lipolysis in live mouse and human          adipocytes (Patent filed). This innovative technique allows for real-time monitoring with high sensitivity, eliminating the    need for genetic manipulation. 

Our method can detect the modulation of lipolysis by beta-adrenergic stimuli, insulin and can detect insulin resistance. Using the suppression of lipolysis by insulin as a surrogate for insulin activity, we test novel compounds to elucidate new insulin sensitizers, specifically targeting adipocytes.  The candidates will be investigated using both in vitro and in vivo models of insulin resistance, paving the way for potential novel antidiabetic drugs. 

 

3)

 We have recently developed FRET-based biosensors to investigate subcellular cAMP dynamics in adipocytes. In addition to the previously characterized cytosolic and plasma membrane biosensors, we identified a distinct cAMP pool localized around lipid droplets, which displays behavior distinct from the cytoplasmic pool.

Our findings reveal that although both FGF1 and insulin suppress lipolysis, they act on different cAMP compartments: FGF1 selectively inhibits plasma membrane–associated cAMP, whereas insulin primarily targets cytoplasmic cAMP (Krier et.al, accepted). This compartment-specific regulation has high clinical relevance, as it uncovers novel therapeutic targets for modulating lipolysis. Furthermore, selectively manipulating cAMP microdomains or specific PDE isoforms may offer new strategies to improve insulin resistance.

See publication

Recent Publications

Mol. Metab., DOI: 10.1016/j.molmet.2025.102273:102273 (2025)

Hinrichs, A. ; Pafili, K. ; Sancar, G. ; Laane, L. ; Zettler, S. ; Torgeman, M. ; Kessler, B. ; Nono, J.L. ; Kunz, S. ; Rathkolb, B. ; Barosa, C. ; Prehn, C. ; Cecil, A. ; Renner, S. ; Kemter, E. ; Kahl, S. ; Szendroedi, J. ; Bidlingmaier, M. ; Jones, J.G. ; Hrabě de Angelis, M. ; Roden, M. ; Wolf, E.

Transient juvenile hypoglycemia in GH insensitive Laron syndrome pigs is associated with insulin hypersensitivity.
Br. J. Pharmacol., DOI: 10.1111/bph.70216 (2025)

Krier, J. ; Spähn, D. ; Lopez, D.A.J. ; Nono, J.L. ; Seigner, J. ; Ussar, S. ; Lukowski, R. ; Birkenfeld, A.L. ; Sancar, G.

PDE4D and PDE3B orchestrate distinct cAMP microdomains in 3T3-L1 adipocytes.

Seigner, J. ; Krier, J. ; Spähn, D. ; Sandforth, L. ; Nono, J.L. ; Lukowski, R. ; Birkenfeld, A.L. ; Sancar, G.

p21-activated kinases (PAKs) regulate FGF1/PDE4D antilipolytic pathway and insulin resistance in adipocytes.

Lorza-Gil, E. ; Strauss, O. ; Ziegler, E. ; Kansy, K. ; Katschke, M.-T.  ; Rahimi, G. ; Neuscheler, D. ; Sandforth, L. ; Sandforth, A. ; Sancar, G. ; Kaufmann, B. ; Hartmann, D. ; Singer, S.R. ; Mihaljevic, A.L. ; Jumpertz von Schwartzenberg, R. ; Sbierski-Kind, J. ; Müller, T.D. ; Birkenfeld, A.L. ; Gerst, F.

Incretin-responsive human pancreatic adipose tissue organoids: A functional model for fatty pancreas research.
Front. Endocrin. 15:1379994 (2024)

Lorza-Gil, E. ; Ekim Üstünel, B. ; Sancar, G.

Editorial: Organ crosstalk in the pathophysiology and treatment of type-2 diabetes.

Sandforth, L. ; Brachs, S. ; Reinke, J. ; Willmes, D. ; Sancar, G. ; Seigner, J. ; Juarez Lopez, D.A. ; Sandforth, A. ; McBride, J.D. ; Ma, J.X. ; Haufe, S. ; Jordan, J. ; Birkenfeld, A.L.

Role of human Kallistatin in glucose and energy homeostasis in mice.
Lancet Diabet. Endocrinol. 11, 798-810 (2023)

Sandforth, A. ; Jumpertz von Schwartzenberg, R. ; Arreola, E.V. ; Hanson, R.L. ; Sancar, G. ; Katzenstein, S. ; Lange, K. ; Preissl, H. ; Dreher, S. ; Weigert, C. ; Wagner, R. ; Kantartzis, K. ; Machann, J. ; Schick, F. ; Lehmann, R. ; Peter, A. ; Katsouli, N. ; Ntziachristos, V. ; Dannecker, C. ; Fritsche, L. ; Perakakis, N. ; Heni, M. ; Nawroth, P.P. ; Kopf, S. ; Pfeiffer, A.F.H. ; Kabisch, S. ; Stumvoll, M. ; Schwarz, P.E.H. ; Hauner, H ; Lechner, A. ; Seissler, J. ; Yurchenko, I. ; Icks, A. ; Solimena, M. ; Häring, H.-U. ; Szendroedi, J. ; Schürmann, A. ; Hrabě de Angelis, M. ; Blüher, M. ; Roden, M. ; Bornstein, S. ; Stefan, N. ; Fritsche, A. ; Birkenfeld, A.L.

Mechanisms of weight loss-induced remission in people with prediabetes: A post-hoc analysis of the randomised, controlled, multicentre Prediabetes Lifestyle Intervention Study (PLIS).

Primary Investigator

Gencer_Sancar_MedKlinik_Portraits213_ 135
Dr. Gencer Sancar

Group Leader, Scientist

Profil anzeigen

Networks and Affiliations