Skip to main content
Machine Learning Model
adobe stock - Starlight

International Conference Contributions

On this page, you will find the latest contributions from Computational Health Center researchers at international AI conferences:

 

Massimo Bini, Karsten Roth, Zeynep Akata, Anna Khoreva
ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections. arXiv


Kouroche Bouchiat, Alexander Immer, Hugo Yèche, Gunnar Ratsch, Vincent Fortuin
Improving Neural Additive Models with Bayesian Principles. arXiv


Theodore Papamarkou, Maria Skoularidou,Konstantina Palla, Laurence Aitchison, Julyan Arbel, David Dunson, Maurizio Filippone, Vincent Fortuin, Philipp Hennig, José Miguel Hernández-Lobato, Aliaksandr Hubin, Alexander Immer, Theofanis Karaletsos, Mohammad Emtiyaz Khan, Agustinus Kristiadi, Yingzhen Li, Stephan Mandt, Christopher Nemeth, Michael A Osborne, Tim G. J. Rudner
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI. arXiv


Julian Coda-Forno, Marcel Binz, Jane X. Wang, Eric Schulz
CogBench: A large language model walks into a psychology lab. arXiv


Johannes A. Schubert, Akshay K. Jagadish, Marcel Binz, Eric Schulz
In-context learning agents are asymmetric belief updaters. arXiv


Akshay K. Jagadish, Julian Coda-Forno, Mirko Thalmann, Eric Schulz, Marcel Binz

Ecologically rational meta-learned inference explains human category learning. arXiv


Theodore Papamarkou, Tolga Birdal, Michael M. Bronstein, Gunnar E. Carlsson, Justin Curry, Yue Gao, Mustafa Hajij, Roland Kwitt, Pietro Lio, Paolo Di Lorenzo,Vasileios Maroulas, Nina Miolane, Farzana Nasrin, Karthikeyan Natesan Ramamurthy, Bastian Rieck, Simone Scardapane, Michael T Schaub, Petar Veličković, Bei Wang, Yusu Wang
Position: Topological Deep Learning is the New Frontier for Relational Learning. arXiv


Jeremy Wayland, Corinna Coupette, Bastian Rieck
Mapping the Multiverse of Latent Representations. arXiv


Georgios Kaissis, Stefan Kolek, Borja Balle, Jamie Hayes, Daniel Rueckert
Beyond the Calibration Point: Mechanism Comparison in Differential Privacy. arXiv


 

Dominik Klein, Théo Uscidda, Fabian Theis, Marco Cuturi
GENOT: Entropic (Gromov) Wasserstein Flow Matching with Applications to Single-Cell Genomics. arXiv


Artur Szałata, Andrew Benz, Robrecht Cannoodt, Mauricio Cortes, Jason Fong, Sunil Kuppasani, Richard Lieberman, Tianyu Liu, Javier Mas-Rosario, Rico Meinl, Jalil Nourisa, Jared Tumiel, Tin M. Tunjic, Mengbo Wang, Noah Weber, Hongyu Zhao, Benedict Anchang, Fabian Theis, Malte Luecken, Daniel Burkhardt
A Benchmark for Prediction of Transcriptomic Responses to Chemical Perturbations Across Cell Types.


Sirine Ayadi, Leon Hetzel, Johanna Sommer, Fabian Theis, Stephan Günnemann
Unified Guidance for Geometry-Conditioned Molecular Generation. arXiv


Tristan Cinquin, Marvin Pförtner, Vincent Fortuin, Philipp Hennig, Robert Bamler
FSP-Laplace: Function-Space Priors for the Laplace Approximation in Bayesian Deep Learning. arXiv


Rayen Dhahri, Alexander Immer, Bertrand Charpentier, Stephan Günnemann, Vincent Fortuin
Shaving Weights with Occam’s Razor: Bayesian Sparsification for Neural Networks using the Marginal Likelihood. arXiv


Karsten Roth, Vishaal Udandarao, Sebastian Dziadzio, Ameya Prabhu, Medhi Cherti, Oriol Vinyals, Olivier Henaff, Samuel Albanie, Matthias Bethge, Zeynep Akata
A Practitioner’s Guide to Continual Multimodal Pretraining. arXiv


Luca Eyring, Shyamgopal Karthik, Karsten Roth, Alexey Dosovitskiy, Zeynep Akata
ReNO: Enhancing One-step Text-to-Image Models through Reward-based Noise Optimization. arXiv


Elisabeth Ailer, Niclas Dern, Jason Hartford, Niki Kilbertus
Targeted Sequential Indirect Experiment Design. arXiv


Yashas Annadani, Panagiotis Tigas, Stefan Bauer, Adam Foster
Amortized Active Causal Induction with Deep Reinforcement Learning. arXiv


Christina Bukas, Harshavardhan Subramanian, Fenja See, Carina Steinchen, Ivan Ezhov, Gowtham Boosarpu, Sara Asgharpour, Gerald Burgstaller, Mareike Lehmann, Florian Kofler, Marie Piraud
MultiOrg: A Multi-rater Organoid-detection Dataset. arXiv


Can Demircan, Tankred Saanum, Leonardo Pettini, Marcel Binz, Blazej Baczkowski, Christian Doeller, Mona Garvert, Eric Schulz
Evaluating Alignment Between Humans and Neural Network Representations in Image Based Learning Tasks. arXiv


Thomas Altstidl, David Dobre, Arthur Kosmala, Bjoern Eskofier, Gauthier Gidel, Leo Schwinn
On the Scalability of Certified Adversarial Robustness with Generated Data.


Katharina Limbeck, Rayna Andreeva, Rik Sarkar, Bastian Rieck
Metric Space Magnitude for Evaluating the Diversity of Latent Representations. arXiv


AI in Health - News